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Outline

ØMotivation for this research
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CMIP3/C4MIP emulation with MAGICC6 is 811–
1170ppm. As discussed above, the lower range of the
CMIP5 ESMs is due to one single model, MRI-ESM1,
which already severely underestimates the present-day
atmospheric CO2 concentration. Not including this model
would mean that the lower end of the MAGICC6 range is
significantly lower than the lower end of theCMIP5ESMs.
The warming ranges simulated by the CMIP5 ESMs

and by the CMIP3/C4MIP model emulations are quite
similar (Figs. 2b and 2d). The first set of models displays
a full range of 2.58–5.68C, while the latter set has a 90%
probability range of 2.98–5.98C.

5. Twenty-first-century land and ocean carbon cycle

To further understand the difference in simulated
atmospheric CO2 over the twenty-first century, we
analyzed the carbon budget simulated by the models, as
already done for the historical period. In the E-driven
runs, the ESMs simulate the atmospheric CO2 concen-
tration as the residual of the prescribed anthropogenic

emissions minus the sum of the land and ocean carbon
uptakes—these latter two fluxes being interactively
computed by the land and ocean biogeochemical com-
ponents of the ESMs. Figure 4 shows the cumulative
land and ocean carbon uptakes simulated by the CMIP5
ESMs. Any difference in simulated atmospheric CO2

comes from differences in the land or ocean uptakes.
The models show a large range of future carbon up-

take, both for the land and for the ocean (Figs. 4a and
4b). However, for the ocean, 10 out of the 11 models
have a cumulative oceanic uptake ranging between 412
and 649PgC by 2100, the exception being INM-CM4.0
with an oceanic uptake of 861PgC. As discussed in the
historical section, the reasons for this large simulated
uptake are unknown. The simulated land carbon fluxes
show a much larger range, from a cumulative source of
165PgC to a cumulative sink of 758PgC. Eight models
simulate that the land acts as a carbon sink over the full
period. Land is simulated to be a carbon source by two
models, CESM1-BGC and NorESM1-ME, both sharing
the same land carbon cycle model, and byMIROC-ESM.

FIG. 4. Range of (a) cumulative global air to ocean carbon flux (PgC), (b) cumulative global air to land carbon flux
(PgC) from the 11ESMsE-driven simulations, (c) the annual global air to ocean carbon flux, and (d) annual global air
to land carbon flux. Color code for model types is as in Fig. 1.
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How important are carbon-climate feedbacks?

Booth et al. (2012)

Ø Earth System Model (ESM) sensitivity analysis – 1 model & 1 scenario 
(HadCM3 – SRES-A1B)

Ø Altered atmospheric physics parameters
Ø Compared to terrestrial carbon cycle parameters
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Remaining uncertainty in current model estimates and future 
projections – gross C uptake (GPP)

Anav et al. (2015)

Mean annual GPP (gCm-2yr-1 1990-2009)

Ø Same climate forcing & vegetation map

Ø Different GPP spatial distribution

Ø Different GPP magnitude

= Uncertainty due to model processes/parameters



Natasha MacBean – OCO-2 Telecon – 16th October 2018

Remaining uncertainty in current model estimates and future 
projections – leaf phenology

Richardson et al. (2012)

Seasonal leaf dynamics 
(Leaf Area Index – LAI) at 
Morgan Monroe Forest
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What is a land surface/terrestrial biosphere model?

http://www.cesm.ucar.edu/models/clm/
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Improving models | Reducing uncertainty
à the model development cycle

Hypothesis testing
(analysis/synthesis of 

experimental data)

Adapted from Williams et al. (2009)
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Improving models | Reducing uncertainty
à the model development cycle

Hypothesis testing
(analysis/synthesis of 

experimental data)
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Outline

ØORCHIDEE Data Assimilation System 
(ORCHIDAS) and past studies



Natasha MacBean – OCO-2 Telecon – 16th October 2018

ORCHIDEE terrestrial biosphere models (TBMs)

ORCHIDEE 
TBM/LSM

13 Plant Functional 
Types (PFTs)
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Reducing uncertainty:
the need for model – data integration

Available C-related data streams

J(x) = ½(M(x)-y)T R-1(M(x)-y)

+ ½(x-xb)T B-1(x-xb)

Observation term

Prior parameter term

Model
Parameters

Obs
Model-data 
mismatch

Prior 
parameters
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Reducing uncertainty:
the need for model – data integration

Available C-related data streams

Improve:
Ø C land budget estimates
Ø Quantify & reduce 

uncertainty
Ø Future climate predictions
Ø Process understanding

DATA 
ASSIMILATION

CMIP3/C4MIP emulation with MAGICC6 is 811–
1170ppm. As discussed above, the lower range of the
CMIP5 ESMs is due to one single model, MRI-ESM1,
which already severely underestimates the present-day
atmospheric CO2 concentration. Not including this model
would mean that the lower end of the MAGICC6 range is
significantly lower than the lower end of theCMIP5ESMs.
The warming ranges simulated by the CMIP5 ESMs

and by the CMIP3/C4MIP model emulations are quite
similar (Figs. 2b and 2d). The first set of models displays
a full range of 2.58–5.68C, while the latter set has a 90%
probability range of 2.98–5.98C.

5. Twenty-first-century land and ocean carbon cycle

To further understand the difference in simulated
atmospheric CO2 over the twenty-first century, we
analyzed the carbon budget simulated by the models, as
already done for the historical period. In the E-driven
runs, the ESMs simulate the atmospheric CO2 concen-
tration as the residual of the prescribed anthropogenic

emissions minus the sum of the land and ocean carbon
uptakes—these latter two fluxes being interactively
computed by the land and ocean biogeochemical com-
ponents of the ESMs. Figure 4 shows the cumulative
land and ocean carbon uptakes simulated by the CMIP5
ESMs. Any difference in simulated atmospheric CO2

comes from differences in the land or ocean uptakes.
The models show a large range of future carbon up-

take, both for the land and for the ocean (Figs. 4a and
4b). However, for the ocean, 10 out of the 11 models
have a cumulative oceanic uptake ranging between 412
and 649PgC by 2100, the exception being INM-CM4.0
with an oceanic uptake of 861PgC. As discussed in the
historical section, the reasons for this large simulated
uptake are unknown. The simulated land carbon fluxes
show a much larger range, from a cumulative source of
165PgC to a cumulative sink of 758PgC. Eight models
simulate that the land acts as a carbon sink over the full
period. Land is simulated to be a carbon source by two
models, CESM1-BGC and NorESM1-ME, both sharing
the same land carbon cycle model, and byMIROC-ESM.

FIG. 4. Range of (a) cumulative global air to ocean carbon flux (PgC), (b) cumulative global air to land carbon flux
(PgC) from the 11ESMsE-driven simulations, (c) the annual global air to ocean carbon flux, and (d) annual global air
to land carbon flux. Color code for model types is as in Fig. 1.
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Global Data Assimilation System – ORCHIDEE LSM

https://orchidas.lsce.ipsl.fr
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Global Data Assimilation System – ORCHIDEE LSM

https://orchidas.lsce.ipsl.fr
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Satellite NDVI to constrain leaf seasonal dynamics

Critical leaf age!
Lagecrit!

Rate of leaf fall!
Lfall!

For 
grasses!

Temperature or 
moisture threshold for 
senescence!
Tsenes  and 
Moistno_senes!

Fraction of 
carbohydrate 
reserve used 
for leaf 
growth!
Klai_happy!

Scalar of temperature threshold and/
or time since moisture minimum!
Kpheno_crit and MoistTmin!

N. MacBean et al. (2015) Using satellite data to improve the leaf phenology of a global Terrestrial Biosphere Model, Biogeosciences, 12, 7185-7208

Ø Satellite NDVI compared to modeled 
fraction of absorbed photosynthetic 
radiation (FAPAR)

Ø FAPAR à LAI via Beer Lambert Law

Ø 4 – 6 parameters per plant functional 
type (PFT)

MODIS
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Satellite NDVI to constrain leaf seasonal dynamics

N. MacBean et al. (2015) Using satellite data to improve the leaf phenology of a global Terrestrial Biosphere Model, Biogeosciences, 12, 7185-7208

Vegetation fractional cover

TrBR TeBD

BoBD BoND

NC3 NC4

Ø 6 deciduous PFTs

Ø 15 random grid points per PFT
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Improvement in modeled leaf senescence…
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N. MacBean et al. (2015) Using satellite data to improve the leaf phenology of a global Terrestrial Biosphere Model, Biogeosciences, 12, 7185-7208
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Dramatic reduction in growing season length

N. MacBean et al. (2015) Using satellite data to improve the leaf phenology of a global Terrestrial Biosphere Model, Biogeosciences, 12, 7185-7208
b)!

a)!

c)!

GSL: Growing season length
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But not much change in GPP magnitude…
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Constraining “fast” processes using FLUXNET data

Kuppel et al. (2014) Model–data fusion across ecosystems: from multi-site optimizations to global simulations, Geosci. Model Dev., 7, 2581-2597

S. Kuppel et al.: Model–data fusion across ecosystems 2587
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Figure 1. Model–data (a) RMSD and (b) bias for the daily NEE time series at each site (filled circles), grouped and averaged by PFT
(horizontal bars), in three cases: prior model (green), multisite optimization (blue) and single-site optimization (orange). (c) PFT-averaged
mean seasonal cycle of NEE, for the training observations (black) and the three aforementioned cases, smoothed with a 15-day moving-
average window.

(Z0overheight, see Table 1), and there is for example no con-
straint on the calculation of the surface temperature, a key
component of the energy balance.
At the seasonal scale, Fig. 3a shows that large reductions

(in relative value) of the simulated mean seasonal NEE am-
plitude are found in boreal evergreen needleleaf and decidu-
ous broadleaf forests and C3 grasslands. The average correc-
tion is somewhat exaggerated in the two former cases and
relatively accurate in the latter case. Conversely, the sea-
sonal NEE variations are consistently amplified by the op-
timization in temperate evergreen needleleaf and broadleaf
forests. However, the averaged model–data phasing is only
weakly modified for the five aforementioned PFTs, with the
exception of the site-specific improvements at TempENF and
C3grass sites. Furthermore, considering the mild correction
of the model–data biases in BorENF, BorDBF and C3grass
(Fig. 1b), one can deduce that most of the RMSD reduction
discussed earlier is for these three PFTs due to an improve-
ment of the simulated NEE amplitude after the optimization.
In temperate deciduous broadleaf forests, the simulated

pattern of NEE is chiefly improved via a better phased sea-
sonal cycle, as shown by the increased phase score, which
was already close to one before optimization. An earlier
study at a similar set of sites of the same PFT showed that the

optimization scheme tends to correct the overall prior model
overestimation of the growing season length (Kuppel et al.,
2012). However, the simulated seasonal amplitude of NEE is
barely changed after optimization, as the corrected flux over-
estimations in winter and summer tend to cancel out, with
a PFT-averaged seasonal amplitude remaining smaller than
that of the observed data (Figs. 1c, 3).
Regarding the latent heat flux, Fig. 3b shows that the opti-

mization has generally a weaker effect on the simulated LE
average phase and amplitude than in the case of NEE. In
most cases the correction brought by the optimization barely
affects the modelled phase, but improves the seasonal am-
plitude. We notice that the LE seasonal cycle is most often
flattened as compared to the prior model, in agreement with
the observations, except for the inconsistent amplification at
TempEBF sites and the overreduction after the site-specific
optimization in C3 grasslands. The weak phase correction
might be related to the soil evaporation component of the la-
tent heat flux, on which the optimization has a limited lever-
age, as mentioned earlier in this section, while the transpira-
tion rate is tightly linked to GPP. It would also explain the
generally lower phase coefficient in deciduous ecosystems
(Fig. 3b), where soil evaporation is a potentially significant
component of LE during leaf onset and senescence.

www.geosci-model-dev.net/7/2581/2014/ Geosci. Model Dev., 7, 2581–2597, 2014
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Figure 5. PFT-averaged mean seasonal cycles of (a) the photosynthetic carbon flux and (b) the respiration flux, smoothed with a 15-day
moving-average window. The simulations using prior (green), single-site (orange) and multisite (blue) parameterizations are compared to the
evaluative observation-derived flux estimates (black).

reduction of the model–data RMSD of 5.2%. Among the
53 sample locations used in this study, there is a signif-
icant improvement at 27 of them with a RMSD decrease
larger than 5%, a notable degradation at 20 locations with
a RMSD increase larger than 5%, and less than a 5% shift
at the remaining 6 locations. In addition, a latitudinal clus-
tering can be identified, as a large median improvement by
42.2% (RMSD-wise) is found at the 3 northernmost loca-
tions (Alert, Ny-Ålesund, and Barrow) and by 33.5% at the
18 locations of the Southern Hemisphere, while there is a me-
dian degradation by 5.6% in the rest of the Northern Hemi-
sphere.
Figure 6 shows the mean seasonal cycle of the simulated

CCO2 , compared to the extended record at three locations,
one in each of the latitudinal areas defined above: Alert,
South Pole, and Mauna Loa, respectively. We note that us-
ing the optimized parameter sets tends to reduce the seasonal
amplitude of CCO2 , and results in an earlier phasing for the
“breathing of the biosphere” in the Northern Hemisphere. At
station Alert, there is a significant adjustment of the simu-
lated seasonal cycle, when changing from the default to the
multisite parameterization of the ORCHIDEE model. This
correction chiefly benefits the seasonal amplitude, which is
decreased and becomes remarkably close to that observed.
The analysis of the contribution of the 11 subcontinental re-
gions in the simulated atmospheric signal (see Sect. 2.4),
grouped in Fig. 6d in larger regions, indicates that the major
terrestrial contribution to this result is from changes in CCO2
due to the boreal Northern Hemisphere fluxes. It is consistent
with the decrease of the NEE seasonal amplitude produced
by the multisite optimization at sites in boreal evergreen

Figure 6. Detrended mean seasonal cycle of the atmospheric CO2
concentrations at (a) Alert, (b) South Pole and (c) Mauna Loa lo-
cations during the 1989–2009 period: the optimization-independent
concentration records (black) are compared to simulations where
the biospheric contribution is calculated using the ORCHIDEE
model with the default (green) and multisite (blue) parameteriza-
tions, and the model–data RMSD given between brackets. (d) Re-
gional contributions to the mean seasonal cycle simulated at Alert.

needleleaf forests, boreal deciduous broadleaf forests and
C3 grasslands (Figs. 1c, 3a), dominant in this region. Sep-
arate global simulations using an optimized parameteriza-
tion for one PFT at a time show that the degraded phasing
at Alert produced by the multisite approach in Fig. 6a mainly
stems from the contributions of BorENF and C3 grassland

www.geosci-model-dev.net/7/2581/2014/ Geosci. Model Dev., 7, 2581–2597, 2014

Ø NEE (and LE) à not 
gross C fluxes

Ø optimized “fast” C-
related parameters 
(photosynthesis, 
respiration), phenology, 
water stress & some 
energy balance

Ø ~60 sites overall

Ø Improved fit to mean 
seasonal cycle
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Outline

ØSIF DA set-up and results



Natasha MacBean – OCO-2 Telecon – 16th October 2018

New data streams! Solar-induced chlorophyll fluorescence (SIF)

Guanter et al. (2012)

Different colors = 
different vegeta2on types
e.g. broadleaf deciduous

Gross C uptake (GPP – gCm-2d-1)
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Ø Appears to be a linear 
relationship between SIF and 
GPP at large spatial (>0.5�) 
& temporal (~monthly) scales 

Ø Slope dependent on 
vegetation type/structure

Ø Damm et al. (2015); Zhang et al. (2016); 
Goulas et al., (2017); Verma et al. (2017); 
Wood et al. (2017)
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Optimization set-up

Ø Assume simple empirical linear relationship between GPP and SIF:

SIF =  a GPP  +  b 

Ø Use GOME2 SIF data (Köhler et al., 2015) 
§ monthly aggregated SIF, 0.5x0.5° resolution, 2007-2011

Ø Constrain ‘a’ and ‘b’ (slope and offset) parameters of linear GPP – SIF relationship – in 
addition to  6 photosynthesis and 9 phenology parameters for ALL vegetated PFTs

Ø 15 grid cells chosen randomly per PFT (where obs available) (fractional cover > 0.6) 
à all 12 vegetated PFTs = total 180 sites 

Ø 12-16 parameters per PFT

Ø Multi-site optimization performed for each PFT

Ø Prior obs uncertainty (R) set to RMSE between model & data 

Ø Parameter uncertainty (B) 40% of range

Ø Impact at global scale à global simulations following standard protocol 
(spinup + transient). Cf Jung et al. MTE-GPP



Natasha MacBean – OCO-2 Telecon – 16th October 2018

SIF data constraint reduces GPP magnitude 

Ø Decrease in global GPP 
magnitude for all PFTs

Ø …except for moisture-
driven PFTs

Ø Highest decrease in NH 
extra tropics à shift in 
global GPP distribution 

Ø Strong reduction in 
uncertainty (~83%)

MacBean, N. et al. (2018), Strong constraint on modelled global carbon uptake using solar-induced chlorophyll fluorescence data, Scien&fic Reports, 8, 1973.
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Shifts in spatial distribution (important for global C sink)

MacBean, N. et al. (2018), Strong constraint on modelled global carbon uptake using solar-induced chlorophyll fluorescence data, Scientific Reports, 8, 1973.
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SIF data assimilation does reduce GPP magnitude 

MacBean, N. et al. (2018), Strong constraint on modelled global carbon uptake using solar-induced chlorophyll fluorescence data, Scientific Reports, 8, 1973.
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Parameter constraint

MacBean, N. et al. (2018), Strong constraint on modelled global carbon uptake using solar-induced chlorophyll fluorescence data, Scien&fic Reports, 8, 1973.

Photosynthesis

Linear SIF-GPP reln parameters

Phenology
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Parameter constraint

MacBean, N. et al. (2018), Strong constraint on modelled global carbon uptake using solar-induced chlorophyll fluorescence data, Scientific Reports, 8, 1973.

Photosynthesis Phenology

Linear SIF-GPP reln parameters
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Parameter covariance

MacBean, N. et al. (2018), Strong constraint on modelled global carbon uptake using solar-induced chlorophyll fluorescence data, Scientific Reports, 8, 1973.

Tropical 
Broadleaved 
Evergreen

Temperate 
Broadleaved 
Deciduous Natural C3 grass
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Comparison to NDVI and FLUXNET NEE

MacBean, N. et al. (2018), Strong constraint on modelled global carbon uptake using solar-induced chlorophyll fluorescence data, Scien&fic Reports, 8, 1973.
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Comparison to NDVI and FLUXNET NEE

MacBean, N. et al. (2018), Strong constraint on modelled global carbon uptake using solar-induced chlorophyll fluorescence data, Scientific Reports, 8, 1973.
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Annual time series and anomalies
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SIF helps us constrain GPP global magnitude and spatial 
distribution

Mean annual GPP (1990-2010)

MacBean et al. (2015) – NDVI vs MacBean et al. (2018) – SIF.

Independent 
data-driven 
estimate (Jung 
et al., 2009)
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Outline

ØPerspectives and future directions…
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Future work in the ORCHIDAS group… 
Implementation of SCOPE (and a note on model complexity)

Upcoming paper by Bacour et al. van der Tol et al.
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Challenges and progress in using multiple datasets to constrain 
models

NASA JPL

Joint assimilation of eddy covariance flux measurements
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Abstract We investigate the benefits of assimilating in situ and satellite data of the fraction of photosynthetically
active radiation (FAPAR) relative to eddy covariance fluxmeasurements for the optimization of parameters of the
ORCHIDEE (Organizing Carbon and Hydrology in Dynamic Ecosystem) biosphere model. We focus on model
parameters related to carbon fixation, respiration, and phenology. The study relies on two sites—Fontainebleau
(deciduous broadleaf forest) and Puechabon (Mediterranean broadleaf evergreen forest)—where measurements
of net carbon exchange (NEE) and latent heat (LE) fluxes are available at the same time as FAPAR products
derived from ground measurements or derived from spaceborne observations at high (SPOT (Satellite Pour
l′Observation de la Terre)) andmedium (MERIS (MEdium Resolution Imaging Spectrometer)) spatial resolutions.
We compare the different FAPAR products, analyze their consistency with the in situ fluxes, and then evaluate
the potential benefits of jointly assimilating flux and FAPAR data. The assimilation of FAPAR data leads to a
degradation of themodel-data agreement with respect to NEE at the two sites. It is caused by the change in leaf
area required to fit themagnitude of the various FAPAR products. Assimilating daily NEE and LE fluxes, however,
has a marginal impact on the simulated FAPAR. The results suggest that the main advantage of including
FAPAR data is the ability to constrain the timing of leaf onset and senescence for deciduous ecosystems,
which is best achieved by normalizing FAPAR time series. The joint assimilation of flux and FAPAR data leads
to a model-data improvement across all variables similar to when each data stream is used independently,
corresponding, however, to different and likely improved parameter values.

1. Introduction

The terrestrial biosphere plays a key role in the control of the exchange of energy and matter (in particular
carbon and water) between the land surface and the atmosphere [Pielke et al., 1998]. The use of land surface
models (LSMs) that describe these main governing processes is of growing importance for improving our
understanding of the fate of the terrestrial ecosystems to environmental changes [Pitman, 2003; Sitch et al.,
2008]. LSMs rely on generic hypotheses and fixed parameterizations that were derived from a limited number
of observations, from the scale of individual plant organs to the scale of the plant community, and under
specific environmental conditions. Therefore, large uncertainties remain in their ability to reliably represent
the spatial and temporal variations of the ecosystem characteristics and the carbon cycle under current
or future climate conditions [Field et al., 1995; Friedlingstein et al., 2006; Wullschleger et al., 2014]. Data
assimilation techniques are increasingly used to reduce these uncertainties by improving themodel parameters
[Wang et al., 2001; Kaminski et al., 2013] while also highlighting possiblemodel deficiencies [Verbeeck et al., 2011;
Kuppel et al., 2012; Keenan et al., 2013].

In this context, in situ eddy covariance flux measurements have mainly been used to constrain the model
parameters controlling the processes of carbon and water exchange [Wang et al., 2001; Braswell et al.,
2005; Knorr and Kattge, 2005; Santaren et al., 2007; Moore et al., 2008; Williams et al., 2009; Groenendijk
et al., 2011; Kuppel et al., 2014]. Eddy flux data alone may not be sufficient to disentangle different concurrent
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Key Points:
• Compatibility of in situ NEE and LE
data and various FAPAR products
through model-data fusion

• FAPAR mainly constrains phenology;
when assimilated alone, it may
degrade the modeled fluxes

• Combining the two data streams
is preferable for improving a
process-based vegetation model
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Future work in the ORCHIDAS group… OCO-2 & TROPOMI? 
SIF + NDVI?   SIF + LAI?   SIF + PRI?   SIF + COS?   SIF + NEE?

MODIS

Resolve any inconsistencies between SIF 
datasets and between SIF and other data
…and crucially -- with model !
See upcoming paper by Bacour et al.

GOME-2

OCO-2

TROPOMI 
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Different relationships across scales? 
à If so, how do we account for that in a process-based model and DA system?

© Xi Yang, U Virginia
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Ongoing/future work using SIF in the ORCHIDEE group

Ø New “gap fraction” model

ORCHIDEE-CAN: Naudts et al. (2015) 
Geosci. Model. Dev., 8, 2035-2065ß

Vegetation 
fraction

Ø New radiative transfer/albedo scheme
O@o et al. (2014) BG

Vuichard et al. ORCHIDEE-CN, submitted
  

Hydraulic architecture
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Ø New plant 
hydraulic 
architecture
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Summary

Ø Revised simulated global GPP budget consistent with 
ORCHIDEE structure (by optimising parameters as well as 
SIF – GPP relationship)

Ø SIF appears to provide stronger (parameter) constraint on 
GPP than NDVI or FLUXNET

Ø Most constraint on magnitude (peak) and shorter GSL in 
NH à change in global GPP distribution

Ø No considerable change in trends on IAV

Ø Lots of work still to be done, especially regarding 
consistencies between datasets.
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Thank you for listening! Any questions?

http://orchidas.lsce.ipsl.fr/

https://macbeanlab.com/
nmacbean@indiana.edu

Cédric Bacour
cedric.bacour@lsce.ipsl.fr

Fabienne Maignan
maignan@lsce.ipsl.fr

Philippe Peylin
peylin@lsce.ipsl.fr

https://macbeanlab.com/

