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Rgapzc?t?s:?\:‘eness to Recent Rain OCO-2 and GOME-2, show some
responsiveness to previous 30-day rain
In drier regions of forest.
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This result is consistent with Kaiyu
Amazonian Guan’s 2015 paper.
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Correlation, SIF:Recent Rain

Correlation strength and slope is similar for both OCO-2 and GOME-2
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Can we use these findings to say something about GPP? Might we expect the
same relationships to apply?



Ying Sun (and coauthors, 2017) says yes. Her results indicate that there is
a relationship between SIF and GPP

GPP = SIF x ~16.0 + (some intercept)

Might this suggest that we now have some sKill in predicting GPP
response to drying/wetting in Amazonian forests?
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Fig. 3. SIF-GPP relationships. The relationship between GPP and OCO-2
SIF (daily mean value, denoted as SIF, converted from instantaneous
measurements) at three flux tower sites representative of three different
biomes: crops (Minnesota Tall Tower KCMP) (30), grass (Stuart Plain in
Australia) (31), and deciduous temperate forests [Missouri Ozark site
(US_MO2)]. The first two sites are selected because they are in the direct
underpass of OCO-2 orbital tracks: for the US_MOz site, OCO-2 SIF
retrievals are obtained from representative forests in the vicinity of the
tower. The KCMP footprint covers a mixture of corn, soybean, and grasses
but is dominated by the two major crops. Error bars represent the SE of

Important Caveat: Sun’s results are from seasonal sites, not Tropical Forest!
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the OCO-2 SIF retrieval. Daily GPP in the 2015 growing season is obtained
during the OCO-2 overpasses from (A) eddy covariance measurements,
(B) FLUXCOM products, and (C) MODIS products, sampled at these three
flux sites. Both FLUXCOM and MODIS GPP are 8-day products and are
linearly interpolated to the OCO-2 overpass dates. The site-specific
FLUXCOM GPP value is extracted from the grid cell (0.083° by 0.083°) that
corresponds to the latitude and longitude of the tower location. The site-
specific MODIS (MOD17A2) GPP value is the average of nine adjacent
pixels (1 km by 1 km) centered at the tower location. Both are roughly
equivalent to ~9-km? area.
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MODELS OF SIF (not SCOPE, but based on van der Tol et al., 2014)

UNIT TEST: We simulate SIF using

a single timestep from SiB. The

only modification is to scale
GPP/GPP.cntia

and see what happens
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HIGH STRESS on RIGHT

Panels:
A: radiation. Held constant.

B: STRESS, or (1 -GPP/GPPpotential).
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C: Normalized GPP and SIF. Can be
thought of as a proxy for yields.

D: Actual GPP as calculated by
SiB.

E: Actual SIF.

F: Ratio of GPP/SIF.
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MODELS OF SIF (not SCOPE, but based on van der Tol et al., 2014)
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What these two panels indicate, from model results, is that GPP decreases
continually with increasing stress, but SIF asymptotes out at a value of about 1/2 of
the unstressed value.

One might make the argument that the relationship between SIF and GPP is
constant below ~35% stress (with a value of 16! ), but that is kind of a stretch.

When stress is higher than 35%, the GPP/SIF ratio is constantly changing.



normalized GPP and SIF
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WAIT A MINUTE! The plot on the left says that SIF and GPP are disconnected at
higher stress, and there is only the semblance of a relationship at low stress. THIS IS
EXACTLY THE OPPOSITE OF WHAT SARAH FOUND IN THE OBSERVATIONS.

So now we have a conflict between what we have inferred from observations and
what our model predicts for SIF-GPP relationships with regard to stress.

How can we explore this disconnect?



The unit test might not be the best use of the model. We took a single timestep, and
‘turned the knob’ on stress alone. As stress increases we could anticipate that non-

linear relationships in the equations that describe our canopy processes would
interact.

So let’s look at it differently, in what | call a ‘drydown’ application. | initialize the
model at 95% saturation of moisture in the soil, vegetation and isothermal soil
Iinitialized at the mean of the air temperature over the length of tower driver data.

| then take a single day of meteorological forcing (a day with few clouds and no rain)

and run that day over and over (8 years) until | have ET-ed all the moisture out of the
soil, down to total stress.

I’ve done this for sites K34, RJA (Reserva Jaru) and K83 in Brazil.



FIRST: How does Christiaan van der Tol (SCOPE) think things will behave?

Note that at low light, high stress (low Vcmax) can
have higher SIF yield than low stress (high Vcmax)
As stress increases
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Can our model reproduce this behavior?

RJA-Reserva Jaru K34-Manaus
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Radiation
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What are we looking at here?

This day is fairly low-stress, from
about 20% stress in the morning/
evening up to ~50% stress at midday
when temperature and VPD will be
largest.

GPP looks like a light-response
curve, yield drops with increasing
light and stress.

SIF keeps increasing with increasing
light, because the SIF yield is
unchanging at around 1.4% even as
stress increases.



K83 January
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Here are 4 days selected from the
drydown simulation as stress
Increases

. Photosynthesis yield follows a nice
| line with increasing stress.

SIF yield behaves regularly, although

| non-linear.

| GPP/SIF changes diurnally by about
| a factor of 3.

{ Could we fit a line onto the GPP/SIF

points?
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Not every simulation behaves so
nicely.



The models seem to say:

1. There is a “quasi-linear” relationship between SIF and GPP at low
stress.

2. Once stress exceeds some (not very large) threshold, this
relationship breaks down.

While the observational data implies:

1. There seems to be a relationship between SIF and GPP in regions
that we would associate with having higher stress (less rainfall,
longer dry season)

2. Wetter (non stressed ) forest regions show little (or slightly
negative) relationship between precipitation and SIF

3. The strength of the relationship is weak



So the models and observations seem to contradict each other in the Amazon
What can we take from this?

1. For both GPP and SIF, you need A) light, and B) leaves. In regions that are highly
seasonal, we can expect a decent relationship between SIF and GPP.

2. In places like the Amazon, where there are always leaves and light, the
relationship might be a little more complicated.



GOME-2 SIF DIFFERENCE: September 2010 - September 2009

We do see a difference In
SIF in response to drought
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SiB3 GPP DIFFERENCE: September 2010 - September 2009
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We also see a difference in
model GPP in response to
drought
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WE SPECULATE that we can reconcile the apparent disagreement between our
model simulations and observations as follows:

- In tropical forests, response to stress may take the form of
- Leaf curling
- Leaf drop
- Branch drop
- Deciduous species in edge forests

- This has the effect of changing fPAR, which will modify SIF

SIF = ¢pr x PAR X fPAR

However, many of our models do not explicitly resolve these processes.
This serves as a caution to those who are trying to simulate SIF in tropical forests.

It also provides a reminder to those interpreting SIF observations as to what
mechanisms may be involved to produce the signal that has been observed.
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