

A machine learning approach to photosynthesis

By Pierre Gentine, Yao Zhang and S. Hamed Alemohammad

TRANSCENDING DISCIPLINES, TRANSFORMING LIVES

Outline

1) Solar Induced Fluorescence (SIF)

2) Difficulties with SIF

3) Other vegetation indices (NDVI, EVI, NIRv)

4) Defining an "objective" MODIS best product for photosynthesis

Solar Induced Fluorescence

During photosynthesis a plant absorbs energy through its chlorophyll

- % used for ecosystem gross primary production (GPP)
- % lost as heat
- % re-emitted (SIF: **byproduct**)

Relationship between GPP and SIF is ~ linear

Responds to stressors (water, light, T)

Now observable from space (GOSAT, GOME-2, OCO-2, TROPOMI)

Solar Induced Fluorescence (SIF)

Fig. 1. Illustration of the spatial distribution of the data acquisition, i.e., the number of soundings (represented by colors), of OCO-2, GOSAT-FTS, and GOME-2 onboard MetOp-A, using July 2015 as an example. The level 2 retrieval is aggregated to $0.1^{\circ} \times 0.1^{\circ}$, roughly equivalent to the OCO-2 swath widths (~10 km) in mid-latitude such as US.

Sun, Y., Frankenberg, C., Jung, M., Joiner, J., Guanter, L., Köhler, P., & Magney, T. (2018). Remote Sensing of Environment, 209, 808–823.

Solar Induced Fluorescence (SIF)

Different retrievals

Sun, Y., Frankenberg, C., Jung, M., Joiner, J., Guanter, L., Köhler, P., & Magney, T. (2018). Remote Sensing of Environment, 209, 808–823.

Solar Induced Fluorescence (SIF)

Relationship with ecosystem GPP ~ linear (slope varies though)

Relationship with global GPP retrieval ~ linear (slope varies though)

Sun, Y., Frankenberg, C., Jung, M., Joiner, J., Guanter, L., Köhler, P., & Magney, T. (2018). *Remote Sensing of Environment, 209*, 808–823.

Tropics: Vegetation drought stress in the Amazon using GOSAT

Lee, J.-E., Frankenberg, C., van der Tol, C., Berry, J. A., Guanter, L., Boyce, C. K., et al. (2013). *Proceedings*. *Biological Sciences*, *280*, 20130171.

Tropics: Vegetation drought vs aridity stress in the Amazon using GOME-2

Giardina, F., Konings, A. G., Kennedy, D., Alemohammad, S. H., Oliveira, R. S., Uriarte, M., & Gentine, P. (2018). Tall Amazonian forests are less sensitive to precipitation variability. *Nature Geoscience*,

Cold climates: phenology

Jeong, S.-J., Schimel, D., Frankenberg, C., Drewry, D. T., Fisher, J. B., Verma, M., et al. (2017). *Remote Sensing of Environment*, *190*, 178–187.

GPP (**CO**₂ **uptake**) is directly related to transpiration *T* (**H**₂**O release**)

GPP = wue T

9.227 Partie Disalar Inc.

SIF might thus a good proxy for T (main ET flux)

Flux retrieval using machine learning and GOME-2 SIF: WECANN **Evapotranspiration**

Alemohammad, S. H. *et al.* Water, Energy, and Carbon with Artificial Neural Networks (WECANN). *Biogeosciences* **14**, 4101–4124 (2017) Available at www.gentine.com.

Flux retrieval using machine learning and GOME-2 SIF: WECANN

Alemohammad, S. H. *et al.* Water, Energy, and Carbon with Artificial Neural Networks (WECANN). *Biogeosciences* 14, 4101–4124 (2017) Available at www.gentine.com.

Flux retrieval using machine learning and GOME-2 SIF: WECANN Nice interannual variability (unlike FLUXCOM or FLUXNET-MTE)

Russia, 2010

Texas, 2011

US Corn Belt, 2012

14 | *RSIF*

Alemohammad, S. H. et al. Water, Energy, and Carbon with Artificial Neural Networks (WECANN). Biogeosciences 14, 4101–4124 (2017) Available at www.gentine.com.

What are our options?

Issue: saturates very quickly, very sensitive to snow, basically color only

- EVI:

-NIR_v=NIR_{reflectance}.NDVI looks promising

- Still based on NDVI (share some issues – snow)

- No radiation information: Only reflectance, not a flux (only correlated with it)

What are our options?

If Yield, LUE_{chl} are not varying much then **fPAR_{chl}.PAR** is a good proxy for GPP (and SIF)

Zhang, Y., Xiao, X., Wolf, S., Wu, J., Wu, X., Gioli, B., et al. (2018). *Geophysical Research Letters*, 45(8), 3508–3519. https://doi.org/10.1029/2017GL076354

What are our options?

Is fPAR_{Chl} a good proxy for SIF/PAR? Mostly yes

MERIS terrestrial chlorophyll index (MTCI)

Zhang, Y., Xiao, X., Wolf, S., Wu, J., Wu, X., Gioli, B., et al. (2018). Geophysical Research Letters, 45(8),

How can we define an objective product?

Daily APAR_{Chl} = PAR_{daily}. RSIF / PAR_{9:30AM}

How can we define an objective product?

Example: Nile

Example: Nile

RSIF reduces noise

Example: Nile

Can go to higher resolution (500m) 😳

RSIF site comparisons

Not impacted by snow, Can track seasonal dryness in California (no need for LUE_{chl} change)

Comparison with vegetation indices

Can pick up peak in GPP in Ag region like SIF but unlike NDVI/EVI

Still several (important) steps for GPP:

- What we see includes: Radiation attenuation/escape factor (PFT and atmosphere dependent)
- Initial GOME-2 estimate has issues/biases: use another better (higher Signal/noise) estimate e.g. OCO-2, TROPOMI
- More bands? Hyperspectral
- Are LUE_{Chl} important? Can we observe them?

Zhang, Gentine et al. submitted

Thank you for your attention

Questions?