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Reconstructed Solar Induced Fluorescence
A machine learning approach to photosynthesis

By  Pierre Gentine, Yao Zhang and S. Hamed Alemohammad
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Solar Induced Fluorescence

During photosynthesis a plant absorbs energy through its chlorophyll
• % used for ecosystem gross 

primary production (GPP) 
• % lost as heat
• % re-emitted (SIF: byproduct)

Relationship between GPP
and SIF is ~ linear

Responds to stressors (water, light, T)

Now observable from space (GOSAT, GOME-2, OCO-2, TROPOMI)



Solar Induced Fluorescence (SIF)
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not provide full global coverage with its 10 km-wide swath (Fig. 1). The
specific characteristics of OCO-2 and comparison to other instruments
are provided in Table 1.

2.2. The SIF retrieval algorithm

The OCO-2 SIF retrieval is solely based on in-filling of solar
Fraunhofer lines in narrow spectral windows around 757 nm and
771 nm. The rationale of using Fraunhofer lines is that atmospheric
scattering due to aerosols or thin clouds has no impact on the depth of
isolated Fraunhofer lines. The original algorithm was developed for

GOSAT SIF retrieval and has been adapted for OCO-2 (Frankenberg
et al., 2012, 2011a). The adaptation is facilitated by the fact that OCO-2
and GOSAT share similar spectral coverage and resolution in the
757–772 nm window encompassing a large number of Fraunhofer lines
at both sides of the O2-A band. The retrieval algorithm is described
below.

For a Lambertian target, the spectral radiance measured by a sensor
at TOA at wavelength λ can be approximated as:
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Table 1
Technical details of SIF and GPP products used in this study.

SIF GPP

OCO-2b GOSAT-FTS GOME-2/MetOp-A FLUXCOM MODIS

Temporal coverage 09/2014 to present 04/2009 to present 01/2007 to present 2009 to 2015 2000 to 2015
Spatial resolution for global gridded

mapping
1°× 1° (monthly) 2°× 2° (monthly) 0.5°× 0.5° (monthly) 0.083°× 0.083°

(8-day)
0.05°× 0.05°

(monthly)
Spatial resolution of ground footprint 1.3× 2.25 km2 10 km diameter 40× 40 km2a – –
Repeat cycle 16 days 3 days 3 daysa – –
Number of clear-sky soundings per

month on land
~2.000,000 (nadir) ~20,000 ~80,000 – –

Local overpass time 1:30 pm 1:00 pm 9:30 am – –
Spectral resolution ~0.05 nm ~0.025 nm ~0.5 nm – –
Fitting window Micro-windows at

757 nm and 771 nm
Micro-windows at
755 nm and 771 nm

Broad window from 734 nm
(or 720 nm) to 758 nmc

– –

a Since July 15th 2013, the pixel size of ground footprint is reduced to 40× 40 km2 (from 40× 80 km2) and the repeat cycle is increased to 3 days (from 1.5 days), associated with the
swath-width reduction of GOME-2 onboard MetOp-A.

b Analysis in this study includes data up to April 2016.
c GOME-2 v26 products (Joiner et al., 2013) use a fitting window of 734–758 nm, while GOME-2 GFZ products (Köhler et al., 2015) use a fitting window of 720–758 nm.

Fig. 1. Illustration of the spatial distribution of the data acquisition, i.e., the number of soundings (represented by colors), of OCO-2, GOSAT-FTS, and GOME-2 onboard MetOp-A, using
July 2015 as an example. The level 2 retrieval is aggregated to 0.1°× 0.1°, roughly equivalent to the OCO-2 swath widths (~10 km) in mid-latitude such as US.

Y. Sun et al.

Data sampling
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Different retrievals
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sources of uncertainty characterized by σmeas include both instrumental
noise and spatial-temporal variability within a grid-cell spanning in a
month, while σtheo quantifies only the former.

4.2. Cross-mission comparison of OCO-2 SIF with GOSAT and GOME-2
products

We compared SIF retrievals in the full year 2015 from OCO-2,
GOSAT, and GOME-2 on the global scale (Fig. 9). Considering that
GOME-2 SIF is inferred at 740 nm, we adjusted it to its corresponding
757 nm level using a scaling factor of 0.59, which is inferred from
model simulations of Soil Canopy Observation Photochemistry and
Energy fluxes (SCOPE) used by Joiner et al. (2013) and Yang et al.
(2015). In addition to this wavelength correction, we applied the daily
adjustment factor (Eq. (6)) to eliminate the influence of different
overpass time. We found that OCO-2 and GOSAT SIF retrievals show
broad spatial agreement for both annual average and boreal summer. In
addition, their retrievals are on the same level of magnitude although
GOSAT suffers from an obviously coarser spatial resolution due to its

sparse data acquisition. Both OCO-2 and GOSAT appear to have a
higher SIF emission in the pan-tropics than GOME-2 (both v26 and GFZ
products). This pattern is similar to an earlier comparison between
GOME-2 and GOSAT (Joiner et al., 2013), which showed that the
former retrieval is lower than the latter in the tropical rainforests. The
higher OCO-2 SIF in the tropics is probably related to its smaller foot-
print size, which may suffer less from contamination of sub-pixel clouds
as compared to a larger footprint of GOME-2. It is also possible that
there is some reabsorption of SIF at 740 nm due to the generally higher
chlorophyll content and more complex structures of the tropical ca-
nopies, thus the GOME-2 retrieval may be somewhat dampened with
respect to the actual canopy SIF emission at this wavelength. The linear
assumption between cos(SZA) and incoming solar radiation might have
also contributed to the differences between OCO-2 (and also GOSAT)
and GOME-2 in the tropics because such assumption is not valid under
cloudy conditions which is common in tropical regions such as the
Amazon. Another possibility is the different retrieval algorithms used
by Joiner et al. (2013) and Köhler et al. (2015) (Fig. 9e–f vs g–h), e.g.,
differences in sampling the training data (non-fluorescent reference

Fig. 9. Comparison of SIF (the daily-mean SIF, the product of the instantaneous SIF at local overpass and the daily-mean adjustment) among OCO-2, GOSAT, GOME-2 v26 from Joiner
et al. (2013) and GOME-2 GFZ products from Köhler et al. (2015) on 1°× 1°, 2°× 2°, 0.5°× 0.5°. The left column shows the annual average of 2015 (January to December), and the right
column shows the summer average (June to August in 2015). The GOME-2 SIF inferred at 740 nm is converted to the corresponding 757 nm level by multiplying a factor of 0.59,
following Yang et al. (2015) and Joiner et al. (2013).

Y. Sun et al.



Solar Induced Fluorescence (SIF)

Relationship with ecosystem GPP
~ linear (slope varies though)
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Here, FF is the light-use efficiency of SIF, and b
is the probability of SIF photons escaping the
canopy. Combining Eqs. 1 and 2 leads to

GPP ¼ FCO2

bFF
SIF ð3Þ

which relates SIF to GPP.
Equations 1 to 3 may not be the most mecha-

nistic way to describe the relationship between
SIF and GPP and its potential variations with a
multitude of biotic and abiotic factors across dif-
ferent climates and biomes. A more mechanistic
alternative involves the description of processes
such as energy partitioning between photosys-
tem I and II, canopy structure, stoichiometry and
fluorescing properties of these two photosystems,
photorespiration, photosynthetic pathways (C3
versus C4), linear and cyclic electron transports,
and fluorescence radiative transfer modeling in
canopies (8). Although such a complex approach
will be important for developing the knowledge
base needed to bridge the gap between bottom-
up biophysical modeling and empirical top-down
constraints, Eqs. 1 to 3 offer a convenient frame-
work for presenting and evaluating arguments and
counterarguments for the SIF-GPP relationship.
An important difference between Eqs. 3 and

1 is that the former involves a ratio of two po-
tentially covarying terms of energy-use efficiency,
whereas the latter uses the product of two in-
dependent variables. The variability of b likely
depends on canopy geometry, solar elevation,
view angle, and other conditions.FCO2 andFF are
also not constants at the leaf scale (9). FCO2varies
with photosynthetic capacities and environmen-
tal conditions (such as light, atmospheric CO2,
and humidity) in a way that is typically predicted

with the Farquhar–von Caemmerer–Berry model
of photosynthesis (39). FF changes with envir-
onmental conditions that affect photochemical
and nonphotochemical quenching (8). Thus, it
seems natural to assume that the slope of the
GPP-SIF relationship will vary across biomes.
A universal SIF-GPP linear relationship would
at least require interbiome variations in FCO2

andFF to cancel each other, a scenario that seems
difficult to realize. Clearly, more in-depth process-
based studies are needed to understand the na-
ture of the SIF-GPP relationship. A particular
emphasis should be placed on the covariation be-
tweenFCO2 andFF at different spatiotemporal
scales, which will be key to using SIF as a short-
cut to estimating GPP at large scales (40).

Consistent spatiotemporal variations
in SIF and GPP revealed by OCO-2

So far we have focused on the characteristics of
OCO-2 SIF and its relationship with GPP at fine
scales. We now address the question of to what
extent SIF can be used to predict the spatiotem-
poral dynamics of GPP. To fully address this
issue, both SIF and GPP products will have to be
improved considerably. Nevertheless, this does
not prevent us from using data already available
to gain initial insights. We therefore employed
the empirical orthogonal function (EOF) method
to decompose the complex spatial and temporal
variability of SIF and GPP into various orthog-
onal components. This analysis allows us to iden-
tify common patterns and discrepancies across
noisy data sets that are usually characterized by
nonlinearity and high dimensionality. We per-
formed an EOF analysis on monthly data sets of
OCO-2 SIF as well as FLUXCOM and MODIS GPP

products and investigated their temporal and
spatial coherences for each orthogonal compo-
nent. Figure 4A shows the four leading EOF
modes for all variables, ordered by how much
variance in the data set each mode explains (fig.
S2). For the first leading mode, all three varia-
bles closely match each other, except in tropical
South America, explaining 63, 74, and 66% of the
total variance in OCO-2 SIF, FLUXCOM GPP, and
MODIS GPP, respectively. The corresponding time
series depicts the seasonal dynamics, with all var-
iables in good agreement with each other (Fig.
4B). The Pearson correlation coefficients between
OCO-2 SIF and FLUXCOM GPP, quantifying their
spatial similarity, are consistently high across all
biomes in this first mode (Fig. 4C). Compared
with the FLUXCOM product, MODIS GPP tends
to have a lower correlation with OCO-2 SIF, espe-
cially in the tropical evergreen broadleaf forests.
From the second mode onward, interesting dis-
crepancies emerge between MODIS GPP and the
other two data sets in different regions of the
world. In South America, for example, the second
mode of OCO-2 SIF and FLUXCOM GPP identi-
fies a northeast-to-southwest stretch (the green
positive phase), which is absent in MODIS GPP
data. Similar contrast exists in the northern edge
of tropical Africa. In the third and fourth modes,
MODIS GPP shows a profound dipole in the cen-
tral Amazon, which is not present in the other
two data sets. These discrepancies have led to a
lower correlation between OCO-2 SIF and MODIS
GPP than with the FLUXCOM product (Fig. 4C),
especially for the grassland and savanna systems.
The time series of the second to fourth compo-
nents also display a closer similarity between
OCO-2 SIF and FLUXCOMGPP than withMODIS

Sun et al., Science 358, eaam5747 (2017) 13 October 2017 4 of 6

Fig. 3. SIF-GPP relationships. The relationship between GPP and OCO-2
SIF (daily mean value, denoted as SIF, converted from instantaneous
measurements) at three flux tower sites representative of three different
biomes: crops (Minnesota Tall Tower KCMP) (30), grass (Stuart Plain in
Australia) (31), and deciduous temperate forests [Missouri Ozark site
(US_MOz)]. The first two sites are selected because they are in the direct
underpass of OCO-2 orbital tracks; for the US_MOz site, OCO-2 SIF
retrievals are obtained from representative forests in the vicinity of the
tower. The KCMP footprint covers a mixture of corn, soybean, and grasses
but is dominated by the two major crops. Error bars represent the SE of

the OCO-2 SIF retrieval. Daily GPP in the 2015 growing season is obtained
during the OCO-2 overpasses from (A) eddy covariance measurements,
(B) FLUXCOM products, and (C) MODIS products, sampled at these three
flux sites. Both FLUXCOM and MODIS GPP are 8-day products and are
linearly interpolated to the OCO-2 overpass dates. The site-specific
FLUXCOM GPP value is extracted from the grid cell (0.083° by 0.083°) that
corresponds to the latitude and longitude of the tower location. The site-
specific MODIS (MOD17A2) GPP value is the average of nine adjacent
pixels (1 km by 1 km) centered at the tower location. Both are roughly
equivalent to ~9-km2 area.

RESEARCH | RESEARCH ARTICLE | REMOTE SENSING

on June 12, 2018
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 



Solar Induced Fluorescence (SIF)

7 | RSIF

Fig. 11. The spatial pattern of OCO-2 SIF (1st row), FLUXCOM GPP (2nd row), and MODIS GPP (3rd row). (a)–(c) Show the annual average (January to December) value in 2015. The
dormant months (when no SIF emission) are excluded for deriving the annual average GPP. (d)–(f) Show the annual (2015) maximum of each variable, zoomed-in to North America to
highlight the US Corn belt, following Guanter et al. (2014). (g)–(i) Show the seasonal variation of each variable, zoomed-in to South America to highlight the dry-season productivity
dynamics (difference between November and June in 2015) in Amazon, following Huete et al. (2006). Note Huete et al. (2006) used October as the late dry-season month, we instead use
November here because of considerable OCO-2 orbital gaps in the October of 2015. Grid-cells with missing values of SIF are masked out in both GPP products in deriving annual mean,
annual maximum, and seasonal changes.

Fig. 12. The relationships between the annual mean OCO-2 SIF and FLUXCOM GPP in 2015 for different biomes. Each scatter represents a grid-cell. The fitted linear regression lines
passing through the origin are displayed (solid), along with the regression line fitted with all biomes (dotted). The ordinary least square (OLS) regression is used here for the fitting.
Biomes are denoted as: CRO for croplands, GRA for grasslands, DBF for deciduous broadleaf forests, SHR for shrublands, EBF for evergreen broadleaf forests, SAV for savannas, NF for
needleleaf forests, respectively.

Y. Sun et al.

Sun, Y., Frankenberg, C., Jung, M., Joiner, J., Guanter, L., Köhler, P., & Magney, T. (2018). Remote Sensing 
of Environment, 209, 808–823.

Relationship with global GPP retrieval
~ linear (slope varies though)
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Success with SIF
Tropics: Vegetation drought stress in the Amazon using GOSAT

Lee, J.-E., Frankenberg, C., van der Tol, C., Berry, J. A., Guanter, L., Boyce, C. K., et al. (2013). Proceedings. 
Biological Sciences, 280, 20130171.

Spectra were recorded by the thermal and near infrared
sensor for carbon observation Fourier Transform Spec-
trometer (FTS) onboard the Japanese GOSAT satellite,
launched on 23 January 2009. The retrieval method, data
characterization and post-processing are described in detail
in previous publications [29,30]. Each GOSAT retrieval
samples a footprint area approximately 10 km in diameter.
Averaging in time and space is needed owing to single
measurement statistical noise. A typical value for monthly
means in this study is 1–1.5+0.1 W m22 sr21 mm21.

A unique and critical step in our data processing is the
correction of an observed zero-level offset in acquired GOSAT
O2 A-band spectra, strongly biasing fluorescence because
its impact on Fraunhofer line depth is indistinguishable from
fluorescence. Compared with the previous analysis, we applied
monthly calibration parametrizations for the GOSAT zero-level
offset coming from a detector nonlinearity [30]. We overcame
this problem by performing calibration steps on a month-
to-month basis, allowing for less scatter in fluorescence
averages. Fluorescence retrievals are nearly completely unaf-
fected by non-absorbing aerosols [36], unlike vegetation
indices based on reflected solar energy that are strongly affected
by aerosols [5].

(b) Canopy water content
We chose QSCAT to study the Amazon vegetation water con-
tent because: (i) the radar backscatter at microwave frequency
(13.4 GHz) and high incidence angle (approx. 468 and 548
from zenith) over dense forest cover are strongly sensitive

to the canopy (predominately leaf and branch) water content
through the canopy dielectric properties [34,37], and (ii)
being an active microwave sensor, QSCAT images over tropi-
cal forests have almost no effects from the presence of clouds
and aerosols, and no sensitivity to seasonal variations to
incoming solar radiation. We used QSCAT backscatter data
(s0) at H polarization from morning and afternoon passes
(6.00 and 18.00 local time) to create monthly estimates of
canopy water content by scaling the radar backscatter with
the ground measurements of canopy water content for the
period of 2009.

(c) MODIS data
The latest version of MODIS land data (Collection 5 product)
was used to generate the EVI time series. MOD13A3 data
(Vegetation Indices, 1 km resolution, monthly composites)
were downloaded from the MODIS Land Processes Distribu-
ted Active Archive Center and pre-processed according to the
quality assurance filtering criteria described in [5]. MODIS
LAI and GPP data are based on the gap-filled version from
Zhao & Running [35]. MODIS GPP values are calculated
using MODIS greenness indices in conjunction with ancillary
meteorological data.

(d) Soil Canopy Observation of Photochemistry and
Energy flux (SCOPE) model description

SCOPE [38] is a vertical (one-dimensional) photosynthesis,
radiative transfer and energy balance model. Photosynthesis
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Figure 1. Seasonal variation of chlorophyll fluorescence, Fs (W m – 2 sr – 1 mm – 1), retrieved from GOSAT in 755 nm over Amazonia during June 2009 – May 2010.
The annual mean is subtracted from the seasonal mean to show fluorescence seasonality. Boxes A, B and C are relative everwet, wet and dry areas, respectively, for
the analysis in figures 2 and 3. The outline in the map line represents the Amazon basin. The resolution in the figure is coarse because GOSAT provides only one
measurement at every 4 s and the retrieval exhibits a high single measurement noise. (Online version in colour.)
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is calculated using Farquhar et al. [39] and Collatz et al. [40]
for C3 and C4 plants, respectively. It calculates the illumina-
tion of leaves with respect to their position and orientation in
the canopy, and the spectra of reflected and emitted radiation
as observed above the canopy in (satellite) observation direc-
tion. The spectral range (0.4–50 mm) includes the visible, near
and shortwave infrared and the thermal domain. The geome-
try of the vegetation is treated in a stochastic way. We used a
canopy structure with a spherical leaf angle distribution with
an LAI of six equally distributed over 60 elementary layers.
Radiative transfer of chlorophyll fluorescence is calculated
using a module similar to the FluorSAIL model [41], but
allowing leaf fluorescence to vary depending on position
and orientation in the canopy. A leaf-level biochemical
model calculates 400–700 nm range fluorescence from the
absorbed fluxes, canopy temperature and ambient vapour,
CO2 and O2 concentrations, in conjunction with GPP, stoma-
tal resistance and the energy balance of the leaf [25]. The
model calculates radiation transport in a multilayer canopy
as a function of the solar zenith angle and leaf orientation
to simulate fluorescence in the observation direction (in this
case nadir).

The fluorescence equations in the original SCOPE model
were modified to accommodate a decrease in maximum dark-
adapted fluorescence, Fm, with increasing stress, following

[42]. This was achieved by introducing a rate constant, Kn for
additional heat dissipation in case of light adapted conditions
on the top of heat dissipation in dark-adapted conditions, Kd.
Thus, Fm is formulated in the following:

Fm ¼
Kf

Kf þ Kd þ Kn
; ð3:1Þ

where Kf is the rate constant for fluorescence. In our formu-
lation, we used 0.05 and 0.95 for Kf and Kd, respectively. Here
Kn varies with the balance of excitation and sink strength,
suggested by Duysens & Sweers [43]. We calibrated this relation
using the empirical data from Galmés et al. [28] resulting in

Kn ¼
Je

Jo
6:2473

Je

Jo
% 0:5944

! "
: ð3:2Þ

Here, Je is the actual electron transport rate calculated from the
CO2 exchange data (the carboxylase limited rate), and Jo is
the maximum possible electron transport calculated from the
absorbed PPFD and the dark-adapted rate constants.

4. Results
The Amazon basin exhibits substantial spatial and temporal
variations in fluorescence (and GPP), and figure 1 depicts
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Figure 2. Seasonal variations of fluorescence at 755 nm (W m – 2 sr – 1 mm – 1) (a), and MODIS EVI and LAI (b), morning and afternoon canopy water content index
from QSCAT (c), precipitation (mm day21) and vapour pressure deficit (VPD; hPa) from European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis
(ERA) at the GOSAT overpass (d ). Three areas (first column A; second column B; third column C; figure 1) are chosen by considering climatology (length of the dry
season) and biome types (see the electronic supplementary material, figure S2). In area A, TRMM climatological precipitation does not drop below 100 mm month21

for all months, area B has three to four months of dry season and area C is outside the rainforest. Gap-filled LAI and canopy water content index are not available for
2010 (2009 values are repeated as dashed lines for illustration). Afternoon canopy water index is higher outside tropical rainforest (region C), implying that plants store
water when stomata are closed and plants are taking up water earlier during the day. The error bar in fluorescence indicates the standard error in the monthly average,
and the grey area indicates the dry season when mean monthly precipitation is below 100 mm month21. (Online version in colour.)
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Success with SIF
Tropics: Vegetation drought vs aridity stress in the Amazon using GOME-2

Giardina, F., Konings, A. G., Kennedy, D., Alemohammad, S. H., Oliveira, R. S., Uriarte, M., & Gentine, P. 
(2018). Tall Amazonian forests are less sensitive to precipitation variability. Nature Geoscience, 
https://doi.org/10.1038/s41561-018-0133-5

Tall forests less sensitive 
to rainfall but more to VPD

Tall ~ more isohydric
(tighter stomata regulation)

Tall  ~ older

ψ s
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ψ l
short
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short >>ψ l

tall

rhydraulics =
height
kxylem

VPD

ψ s

https://doi.org/10.1038/s41561-018-0133-5
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Success with SIF
Cold climates: phenology

Jeong, S.-J., Schimel, D., Frankenberg, C., Drewry, D. T., Fisher, J. B., Verma, M., et al. (2017). Remote 
Sensing of Environment, 190, 178–187. 

sensed variables (Fig. 3). At both of two continents, in spring, seasonal
evolution of NDVI and SIF lagged behind that of temperature and
SWR. On the contrary, in fall, after reaching the annual maximum, SIF
falls as the radiation forcing decreases, whereas NDVI and temperature
see higher values that extend further into the fall season. Overall, in con-
trast to NDVI, as a physiological response variable, SIF implicitly in-
cludes the impacts of temperature as well as aspects of radiation
availability at large-scale.

We further quantified differences in the timing of phenology events
in the spring and fall (i.e., spring/fall onset/offset or start/end of growing
season) between NDVI, SIF, and GPP (Fig. 4). Here, we also estimated
spring and fall dates by calculating NDVI × SWR to understand the im-
pact of radiation availability. In spring, over Eurasia, regardless of the se-
lected threshold values (e.g., 20, 50, and 80%, respectively), NDVI-based
onset dates increase in spring before SIF- and GPP-based onset dates for
all latitude bands (upper panel in Fig. 4). Averaged over the latitude

bands, the spring onset date of NDVI for the 20% threshold (day of
year: DOY 76 (±17 days)) precedes SIF and GPP by 24 (±6) days and
23 (±9) days, respectively. However, the spring initiation of SIF (DOY
100 (±8days) for 20% threshold, DOY 126 (±7days) for 50% threshold,
and DOY 154 (±9 days) for 80% threshold corresponds to spring initia-
tion of GPP DOY 99 (±11 days) for 20% threshold, DOY 125 (±7 days)
for 50% threshold, andDOY 153 (±9days) for 80% threshold. In contrast
to spring days, the fall days for NDVI lag the days from SIF andGPP by 46
(±11 days) and 43 (±8 days) days, respectively. These general differ-
ences between SIF and NDVI onset and offset days are observed in
North America as well, indicating that the two types of measurements
observe fundamentally different phenomena with information on con-
trasting aspects of system function.

Consequently, NDVI-based phenology shows longer growing sea-
sons than those derived from SIF- or GPP-based phenology. In particu-
lar, the differences in fall offset dates between NDVI and SIF (or GPP)

Fig. 1.Normalizedmean seasonal cycle of area averagedGOSATSIF, GOMESIF,MODISNDVI, GIMMSNDVI,MPIGPP, andMODISGPP over northern temperate and boreal forests (40–55°N)
for the period 2010–2012 in Eurasia (a) and in North America (b). Error bars in all figures indicate monthly standard deviations for the period 2010–2012.

Fig. 2.Normalizedmean seasonal cycle of area averagedGOSATSIF, GOMESIF,MODISNDVI, GIMMSNDVI,MPIGPP, andMODISGPP over northern temperate and boreal forests (40–55°N)
for the period 2010–2012 in deciduous and evergreen forests over Eurasia (a, b) and over North America (c, d). Error bars in all figures indicatemonthly standard deviations for the period
2010–2012.

181S.-J. Jeong et al. / Remote Sensing of Environment 190 (2017) 178–187

NDVI exaggerates seasonal cycle
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Success with SIF

GPP (CO2 uptake) is directly related to transpiration T
(H2O release)

SIF might thus a good proxy for T (main ET flux)

GPP = wueT
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Flux retrieval using machine learning and GOME-2 SIF: WECANN

Evapotranspiration

Alemohammad, S. H. et al. Water, Energy, and Carbon with Artificial Neural Networks (WECANN). Biogeosciences 14, 4101–4124 (2017)

Available at www.gentine.com.

S. H. Alemohammad et al.: Water, Energy, and Carbon with Artificial Neural Networks 4109

Figure 3. Global patterns of seasonal average LE from WECANN in 2011: (a) December–February, (b) March–May, (c) June–August, and
(d) September–November.

Figure 4. Similar to Fig. 3 but for H instead of LE.

in the Amazon because of the strong variabilities in soil type,
green-up, biodiversity, and rooting depth. In the drier part
of the basin, water availability controls the seasonal cycle
of photosynthesis, and the peak in GPP is observed in the
wet season (DJFMA). In the Congo rainforest, GPP exhibits
four seasons, with two wet and two dry ones, with a substan-
tial decrease in GPP during those dry spells. In Indonesia,

GPP is steadier throughout the year, exhibiting high values
year round. Monsoonal climates over India, Southeast Asia,
northern Australia, and Central–North America are well cap-
tured with rapid rise in GPP following water availability. The
highest GPP values are observed in rainforests and the agri-
cultural US Great Plains, in JJA for the latter. Northern lat-
itude regions mainly exhibit substantial GPP in the summer

www.biogeosciences.net/14/4101/2017/ Biogeosciences, 14, 4101–4124, 2017
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Flux retrieval using machine learning and GOME-2 SIF: WECANN

Alemohammad, S. H. et al. Water, Energy, and Carbon with Artificial Neural Networks (WECANN). Biogeosciences 14, 4101–4124 (2017)

Available at www.gentine.com.

Success with SIF
S. H. Alemohammad et al.: Water, Energy, and Carbon with Artificial Neural Networks 4111

Figure 6. Correlation coefficient (R2) between WECANN retrievals and FLUXNET tower estimates categorized across different plant
functional types for (a) LE, (b) H , and (c) GPP. Markers show mean, and whiskers show 1-standard-deviation intervals. (CRO: croplands,
DBF: deciduous broadleaf forests, EBF: evergreen broadleaf forests, ENF: evergreen needleleaf forests, GRA: grasslands, MF: mixed forests,
SAV: savannas, and WET: permanent wetlands).

well, yet dry year H is underestimated (Fig. 7a). The GPP re-
ported at the site very rapidly decays at the end of the spring,
whereas the region is highly agricultural with sustained agri-
culture in the summer. The difference between the reported
GPP and WECANN retrievals might again be due to the dif-
ference in the footprint of the two estimates.

At the Brasschaat, Belgium, site (BE-Bra) (Fig. 7b), LE
is very well captured by WECANN, which captures the sea-
sonal cycle well, yet misses some of the interannual variabil-
ity. WECANN outperforms the other retrievals of LE and
GPP and captures the GPP seasonal cycle very well com-
pared to other products, which display a too-early GPP rise
and overestimate summer GPP. Again, the SIF data provide
independent useful data compared to other environmental in-
formation (radiation, temperature, vegetation indices) used
by the other retrieval schemes. All retrievals strongly under-
estimate the reported eddy covariance H . At this humid site
though, the magnitude of the measured H is often higher or
on the same order in the summer as LE. Given the high de-
gree of urbanization around the site, it is most likely a reflec-
tion of the footprint of the eddy covariance and the fact that it

observes urbanized surfaces with high H . Indeed, the surface
energy budget is not locally balanced and turbulent fluxes
are higher than the observed net radiation minus ground heat
flux.

At the cold Finland site (FI-Hyy), WECANN captures the
seasonal cycle of GPP and LE very well, as well as H to
a lesser extent. WECANN reproduces the seasonality, am-
plitude, and interannual variability better compared to other
retrievals (Fig. 7c). It also reflects the difficulties of retriev-
ing fluxes in snow-dominated regions. SIF has the great ad-
vantage that it is not directly sensitive to snow compared to
vegetation indices, for instance, which incorrectly attribute
snowmelt and changes in observed ground color to photo-
synthesis onset (Jeong et al., 2017).

At the monsoonal grassland site of Santa Rita, AZ, WE-
CANN correctly captures the complex dynamics of H and
LE at the site, with some rain periods preceding the mon-
soon period (Fig. 7d). However, WECANN slightly underes-
timates LE and overestimates GPP. In fact, all products over-
estimate GPP in the dry and cold seasons. The landscape in
the region is highly heterogeneous, with denser vegetation in

www.biogeosciences.net/14/4101/2017/ Biogeosciences, 14, 4101–4124, 2017

ET

H: sensible heat flux

GPP
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Flux retrieval using machine learning and GOME-2 SIF: WECANN
Nice interannual variability (unlike FLUXCOM or FLUXNET-MTE)

Alemohammad, S. H. et al. Water, Energy, and Carbon with Artificial Neural Networks (WECANN). Biogeosciences 14, 4101–4124 (2017)
Available at www.gentine.com.

Success with SIF
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Figure 11. Mean monthly anomalies (in percentage with respect to mean value) for three extreme heat wave events.

Figure 12. Relative absolute difference between ET estimates of
WECANN compared to modeled ET from basin-scale water budget
closure. Markers show the mean, and whiskers show 1-standard-
deviation intervals.

observations in the WECANN retrievals by replacing them
with more typical optical and/or near-infrared indices of veg-
etation (normalized difference vegetation index, NDVI, or
enhanced vegetation index, EVI).

To do so, we trained two different ANNs with NDVI and
EVI instead of SIF data on each of the three variables (LE,
H , and GPP) and evaluated the retrievals against the same
FLUXNET tower measurements used in Sect. 4.2 for eval-
uating WECANN retrievals. Tables S5–S7 show the results
of evaluations of these three retrievals against the tower mea-
surements for LE, H , and GPP. In terms of the correlation
coefficient, on average all three retrievals have a relatively
similar performance except in regions such as Spain where
phenology (and incident radiation) is not the main contribu-
tor to the flux variability (ES-LgS). Indeed, in such regions,
changes in canopy structure are more limited and changes in
response to water stress (through changes in light- and water-
use efficiency) are the primary reason for the seasonal vari-
ability. This emphasizes, similar to current thinking on the

SIF signal, that the monthly SIF signal is dominated by inci-
dent radiation and canopy structure but that in some condi-
tions light-use efficiency changes are detected by SIF but not
optical vegetation indices (Lee et al., 2013). We also point
out that current SIF retrievals (such as those from GOME-2
used here) are still noisy as they were not obtained by satel-
lites designed to measure SIF. Future SIF-designated mis-
sions such as Fluorescence Explorer (FLEX) will have higher
accuracy and finer spatial and temporal resolution (Drusch et
al., 2016). We expect they will further enhance the retrievals
of surface fluxes and GPP such as those from WECANN.

5 Conclusions

This study introduces a new statistical approach to retrieving
global surface latent and sensible heat fluxes as well as gross
primary productivity using remotely sensed observations on
a monthly timescale. The methodology is developed based
on an artificial neural network that uses six input datasets
including solar-induced fluorescence, precipitation, net radi-
ation, soil moisture, snow water equivalent, and air tempera-
ture. Moreover, a Bayesian approach is implemented to op-
timally integrate information from three target datasets for
training the ANN, using triple collocation to calculate a pri-
ori probabilities for each of the three target datasets based on
their uncertainty estimates.

The new global product, referred to as WECANN,
is evaluated using target datasets as well as FLUXNET
tower observations. The evaluation results compared
with training datasets show that our retrieval has sim-
ilar correlation with the three products, while it has
the smallest RMSD with FLUXNET-MTE for LE
(RMSD = 6.42 W m�2), H (RMSD = 7.84 W m�2), and

www.biogeosciences.net/14/4101/2017/ Biogeosciences, 14, 4101–4124, 2017
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Nope
SIF has disadvantageous: main ones

- Very very noisy
- Coarse scale

So we are all good, right?

GOME-2 JJA
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Use vegetation indices instead

- NDVI:
Issue: saturates very quickly, very sensitive to snow, basically color only

- EVI:
improved NDVI but share same issues

-NIRv=NIRreflectance.NDVI

looks promising

But: 

- Still based on NDVI (share some issues – snow)

- No radiation information: Only reflectance, not a flux (only correlated with it)

What are our options?

Badgley, G., Field, C. B., & Berry, J. A. (2017). Canopy near-infrared reflectance and terrestrial 

photosynthesis. Science Adv, https://doi.org/10.1126/sciadv.1602244

radiation transport simulations (see text S3 and fig. S3). This further
indicates that NIRV should strongly relate to GPP, although NIRV is
likely determined solely by canopy structure. This contrasts with SIF,
which should also contain physiological information through
variations in fluorescence yield.

Much of the excitement about SIF relates to its strong correlation
with GPP (12–15). Monthly average SIF at 0.5° spatial resolution
strongly corresponds with state-of-the-art statistical estimates of
monthly GPP (R2 = 0.73, Fig. 2A) (16). However, available SIF mea-
surements have limited spatial resolution (for example, 40 × 60 km2)
and span a short duration, with measurements extending only back to
2007, limiting their potential applications. In contrast, numerous sen-
sors have measured NIRT and NDVI for the entire globe at moderate
spatial resolution and regular intervals over several decades. Monthly
NIRV, calculated from nadir-corrected Moderate Resolution Imaging
Spectroradiometer (MODIS) reflectances (17), has a higher correlation
with globally gridded GPP than GOME-2 SIF (R2 = 0.91; Fig. 2B).
This strong agreement persists across all biomes, including sparsely
vegetated ecosystems (for example, grasslands), where reflectance-
based approaches traditionally yield high uncertainty (18), further em-
phasizing that NIRV addresses the mixed-pixel problem. The ability of
NIRV to resolve the mixed-pixel problem arises from the combination
of NDVI and NIRT, as evidenced by the comparison of MODIS-
derived NIRT and NIRV against measurements of SIF (fig. S4).

To more directly test the usefulness of NIRV for estimating GPP,
we compared MODIS-based NIRV estimates with monthly observa-
tions of GPP at 105 in situ CO2 flux monitoring sites (Fig. 3A)
(19). Across all sites, the median value of monthly variance in ob-
served GPP explained by NIRV is 76% (Fig. 3B). For these sites, NIRV

explains more of the variance in monthly GPP estimates than either
MODISNDVI or fPAR.NIRV performs aswell asMODISGPP estimates,
although the MODIS GPP algorithm explicitly incorporates additional
observations, including incident photosynthetically active radiation,
temperature, and humidity, in addition to biome-specific terms, to ac-
count for the temperature sensitivity and water stress sensitivity of
photosynthesis (20). This indicates that NIRV relates to key parameters
that determine GPP. Furthermore, the tightly clustered range of values
for the slope of multiyear average monthly GPP as a function of multi-
year average monthly NIRV indicates that NIRV captures parameters
that control GPP over longer time scales as well (Fig. 3C).

Canopies with high carbon assimilation rates (for example, crops)
display leaves with high photosynthetic capacity to maximize direct
beam radiation, resulting in higher NIRV. A conifer canopy can have
the same fPAR as a crop canopy but has a complex architecture with
clumped and shaded leaves. This canopy has both a lower photo-
synthetic capacity and lower NIRV. This pattern is evident across
the 105 CO2 monitoring sites examined in Fig. 3, with crop sites hav-
ing both 60% higher NIRV and GPP than evergreen sites during the
month of peak GPP, despite the sites sharing similar fPAR values (see
table S5). In this formulation, NIRV describes the relationship between
canopy light capture and GPP. Across the 105 sites we examined, ca-
nopies with higher NIRV have higher light-use efficiencies.

A substantial body of literature supports the hypothesis that leaves
are built and displayed in a way that matches energy absorption to
photosynthetic capacity (6, 7, 21, 22). Because plants allocate photo-
synthetic capacity to optimize resources in a way that tends to fully
exploit captured sunlight, the photochemical capacity of the complete
canopy (including shaded leaves deep in the canopy) directly relates to
the performance of the top leaves of the canopy (10). Canopies with
high photochemical capacity can more readily avoid light saturation,
meaning they should display their leaves to use a higher proportion of
direct beam radiation. This configuration, driven by whole-canopy ca-
pacity, results in higher values of NIRV. We hypothesize that NIRV

captures these variations in canopy architecture, which, in turn, are
the end product of whole-plant optimizations, from the scale of the
chloroplast upward. This theoretical interpretation of NIRV as a proxy
for photosynthetic capacity is further corroborated by a pair of studies
that related NIRT from high-resolution (17m) Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS) imagerywith leaf nitrogen content, the
main determinant of photosynthetic capacity (23), and the ratio of sun-
exposed leaf area to total leaf area across broadleaf and conifer forest
plots in the northeastern United States (24). Like nitrogen content,
the ratio of sun to shaded leaves is strongly related to photosynthetic
capacity (25–27). The full extent and origin of theNIRV-photosynthesis
relationship should prove a fruitful area of future study (28).

The strong theoretical foundation of NIRV, combined with its ease
of calculation and applicability to decades of moderate-resolution,
reflectance-based remote sensing data, will facilitate the study of GPP in
natural and agricultural systems. NIRV can also help quantify eco-
system responses to global change and spatial and temporal

A B

I I
Fig. 1. SIF relates to NIRV through surface vegetated fraction. (A) The corre-
lation between NIRT and SIF increases with vegetated fraction. The upper bounds of
the NDVI quartiles are as follows: 0.17, 0.27, 0.37, and 0.72. (B) NIRV closely proxies
multiyear monthly averaged SIF. All data calculated using 2008–2010 GOME-2 data
averaged monthly and regridded to 0.5°. Shading indicates the logged number of
pixels within each bin.

A B

Fig. 2. Comparison of multiyear monthly mean (A) SIF and (B) NIRV against
global data-driven GPP estimates. SIF estimates come from GOME-2 data aver-
aged monthly and regridded to 0.5°. MODIS NIRV estimates were aggregated to
0.5° from 500-m scenes of BRDF-corrected reflectances. GPP estimates come from
the Max Planck Institute upscaling approach (16). Shading indicates the logged
number of pixels within each bin.
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We want an objective assessment of GPP
Let us go back to the basics (light use efficiency a la Monteith)

GPP = LUEChl.fPARChl.PAR
Similarly

SIF = Yield.fPARChl.PAR

So SIF = Yield/ LUEChl . GPP
If Yield, LUEChl are not varying much then fPARChl.PAR is a good proxy for GPP (and SIF) 

What are our options?

Zhang, Y., Xiao, X., Wolf, S., Wu, J., Wu, X., Gioli, B., et al. (2018). Geophysical Research Letters, 45(8), 
3508–3519. https://doi.org/10.1029/2017GL076354

https://doi.org/10.1029/2017GL076354
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Is fPARChl a good proxy for SIF/PAR?
Mostly yes

What are our options?

Zhang, Y., Xiao, X., Wolf, S., Wu, J., Wu, X., Gioli, B., et al. (2018). Geophysical Research Letters, 45(8), 
3508–3519. https://doi.org/10.1029/2017GL076354

intercept values as fPARcanopy (Figure S1). For clear days, the regressions between εecomax and EVIm or MTCIm,
which are considered better fPARchl approximations, showed a smaller variation of regression slopes
within each biome types than those using the other two canopy indicators (fPARmod15 and NDVI;
Figures 3a–3d). EVIm and MTCIm were also characterized by a smaller root-mean-square errors and higher
coefficients of determination (R2) than fPAR and NDVI when all biome types were combined together
(Tables S4 and S5). Similar results were also found for cloudy days (Figures 3e–3h) and when using NDVI
with different intercepts as fPARcanopy proxies (Figure S8). From the ecosystem (top of canopy) PAR
absorption to canopy or chlorophyll PAR absorption, the corresponding maximum daily LUE converges as
shown by smaller coefficients of variation across biomes using fPAR = 1, fPARcanopy, and fPARchl
approximations (Figures 3i and 3j).

3.3. Using fPARchl Approximations to Track Seasonal Dynamic of Reference LUE

We also tested whether this convergence can be found across time, that is, whether the seasonal changes of
LUEref can be explained by the change of the canopy chlorophyll. We chose two tropical rainforest sites in the
Amazon forest where multiyear eddy flux observations were available (Wu et al., 2016). For both sites, MTCIm
showed a similar seasonal pattern of LUEref, while NDVI was not sensitive to seasonal changes (Figure 4). This
represents that the seasonal variation of εecomax can be better explained by fPARchl than fPARcanopy (NDVI); there-
fore, the εchlmax (ε

eco
max/fPARchl) has a smaller variation at seasonal scale compared to εcanopymax .

Figure 1. Relationships between fPARSIF and four optical vegetation activity indicators. Each point represents the average value of all the gridcells within a specific
land cover type for either the northern or southern hemisphere for each month. Land cover types were aggregated from Moderate Resolution Imaging
Spectroradiometer land cover map (Text S4 and Figure S10). Two hemispheres were calculated separately because of different phenological cycles. The solid lines
represent regressions for the northern hemisphere, and the dashed lines represent regressions for the southern hemisphere. The coefficients of determination
for each regression are given in the lower-right corner. The four horizontal lines with dots below fPARSIF = 0 (lower left corner) represent the mean value and
standard deviation of the regression intercepts between the fPARSIF and optical vegetation activity indicators in the temporal domain for individual pixel grouped by
different land cover types (Figure S6; Friedl et al., 2010).

10.1029/2017GL076354Geophysical Research Letters

ZHANG ET AL. 3513

MERIS terrestrial chlorophyll index (MTCI)

https://doi.org/10.1029/2017GL076354
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Objective:

Try to reproduce SIF/PAR ~ fPARChl with MODIS

Called Reconstructed SIF (RSIF)
Based on GOME-2 v26 Joiner SIF

PAR: BESS product (Ryu et al. 2017)

Daily APARChl = PARdaily . RSIF / PAR9:30AM

How can we define an objective product?

MODIS 

channels

Reconstructed

SIF

(RSIF)

Gentine, P., & Alemohammad, S. H. (2018). RSIF (Reconstructed Solar Induced Fluorescence). Geophysical 
Research Letters (in press), available at www.gentine.com
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Better with 
WECANN which 

uses SIF J

How can we define an objective product?

The RSIF product is then compared to local flux observations form the FLUXNET 2015 data set. RSIF has a
mean correlation of 0.73 with GPP estimates from flux towers compared to 0.69 for the FLUXNET-MTE GPP
product and 0.68 for the MODIS GPP product across 74 sites from the Tier 1 product. Given that the RSIF pro-
duct does not use additional weather/climate information unlike these other GPP products, this result is very
encouraging and shows that the raw information content within the MODIS shortwave channels provides
directly pertinent information regarding GPP.

We further split the temporal correlation into a climatology of the seasonal cycle and the interannual varia-
bility. RSIF outperforms other products in terms of seasonal cycle with a mean correlation of 0.83 with

Figure 2. Pixel-wise temporal correlations between Reconstructed Solar-Induced Fluorescence (RSIF) based on rectified lin-
ear unit activation function with four input reflectance channels, five neurons through one hidden layer and solar-induced
fluorescence (SIF; top), and SIF/RSIF with two global estimates of gross primary productivity (GPP): FLUXNET-Multiple
Tree Ensemble (MTE) and Water, Energy, and Carbon with Artificial Neural Networks (WECANN). The correlations are
computed over the longest period possible based on data limitations (Global Ozone Monitoring Experiment-2 SIF
2007–2016, MTE GPP 2007–2011, and WECANN GPP 2007–2015).

10.1002/2017GL076294Geophysical Research Letters

GENTINE AND ALEMOHAMMAD 6

Better against 
FLUXNET-MTE
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Example: Nile
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Example: Nile
RSIF reduces noise
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Example: Nile
Can go to higher resolution (500m) J
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RSIF site comparisons

Not impacted by snow, 
Can track seasonal dryness in California (no need for LUEChl change)
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Comparison with vegetation indices

Can pick up peak in GPP in Ag region like SIF but unlike NDVI/EVI
eddy covariance GPP across sites, compared to 0.81 for FLUXNET-MTE and 0.807 for MODIS-GPP. RSIF largely
outperforms other products in terms of its interannual correlation with a correlation of 0.29, compared to 0.12
for FLUXNET-MTE and a negative correlation for MODIS-GPP (!0.03). We note that we cannot expect perfect
correlation given the inherent noise and data gap filling in eddy covariance data, but this higher correlation is
comforting and shows the potential of RSIF to assess interannual variability in GPP.

Finally, global averages and the 90th percentile of RSIF, in order to assess the peak seasonal value, are ana-
lyzed (Figure 3). The highest values of annual average RSIF are observed in tropical forests, as expected, with
a peak over the Amazon and Maritime Continent, similarly to more complex GPP products using more input
sources, such as WECANN (Alemohammad et al., 2017). Dry to wet transitional regions are correctly

Figure 3. Temporal mean (top) and 90 percentile value (middle) of Reconstructed Solar-Induced Fluorescence (RSIF;
mW2 m!4 sr!1 nm!1) and 90 percentile of solar-induced fluorescence (SIF; mW2 m!4 sr!1 nm!1; bottom), emphasiz-
ing agricultural regions.

10.1002/2017GL076294Geophysical Research Letters

GENTINE AND ALEMOHAMMAD 7
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Still several (important) steps for GPP:

• What we see includes: Radiation attenuation/escape factor (PFT and 

atmosphere dependent)

• Initial GOME-2 estimate has issues/biases: use another better (higher 

Signal/noise) estimate e.g. OCO-2, TROPOMI

• More bands? Hyperspectral 

• Are LUEChl important? Can we observe them?

Zhang, Gentine et al. submitted

Next steps
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Thank you for your attention

Questions?


