
OCO-2 and OCO-3:

Watching the Earth Breathe.

Earth's climate is changing.
Carbon dioxide is driving it.
The Orbiting Carbon Observatories are measuring it.
From space.

ANUARY 2022

Relentless Rise of CO₂

The Orbiting Carbon Observatory missions are measuring the rise in atmospheric CO₂ to better understand where it is released into the atmosphere, and where it is removed.

Nature's Offset

The OCO missions have quantified how CO₂ emissions are offset by natural carbon sinks like forests and oceans.

CO.

Changes Over Time

Long-term, global measurements from the OCO missions show two-way interactions between CO₂ and climate.

National Aeronautics and Space Administration

Jet Propulsion Laboratory 4800 Oak Grove Drive Pasadena, CA 91109 ocov2.jpl.nasa.gov ocov3.jpl.nasa.gov

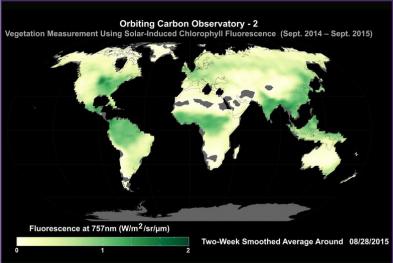
Local Sources of CO₂

The OCO missions have shown how space-borne measurements can accurately quantify CO₂ emissions from power plants and cities.

CO₂ & Climate

Change

Human activities, including burning of fossil fuels, have introduced additional CO₂ into our atmosphere. This has increased Earth's mean temperature, a pattern that will continue over the coming years.



Only about half of the total CO₂ emitted stays in the atmosphere.

Los Angeles Traffic, 2010

So where does the other half of the CO₂ go?

The OCO record shows how natural sinks vary in space and time around the globe.

taking up CO₂.

Some of it is absorbed by natural

oceans. The OCO missions keep

plant fluorescence. Fluorescence

is the glow plants emit when they

track of this in two ways: a) through

measurements of CO₂ and b) through

photosynthesize; it indicates they are

carbon sinks, like forests and

Rainforest Deforestation

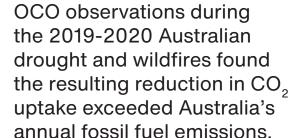

CO₂ Hotspots

The OCO missions provide observations of CO₂ over large, localized CO₂ sources such as urban areas and power plants.

These data have quantified emissions from dozens of cities and power plants worldwide. They demonstrate a spaceborne capability for tracking power plant emissions in close to real time.

CO₂ concentrations over Los Angeles, captured on Feb 19, 2021

OCO Record Captures


Climate and Extreme

Events

OCO measurements during the 2015/2016 El Nino event quantified impacts on uptake and release of CO₂ by the oceans and biosphere.

OCO measurements show that the Amazon basin, often thought of as the "lungs of the planet", has been a net CO₂ source in the dry/fire season in recent years.

Kangaroos and other animals flee a bushfire in Australia

OCO data showed that extreme floods in the US Midwest in 2019 both delayed and reduced the carbon uptake from those croplands

relative to 2018.

