Estimating Global GPP with SIF and a Data Assimilation System

Alexander J. Norton

P.J. Rayner, E.N. Koffi, M. Scholze, J.D. Silver, Y-P. Wang
• Global GPP estimates vary widely (see review by Anav et al. 2015)
• Observations need to be better integrated with predictive models
• Linear relationship at monthly timescale
• Slope can vary with ecosystem type and environmental conditions
• Can use a simple linear scaling (e.g. Macbean et al. 2018):
 • This may omit some important non-linearities
 • Cause additional equifinality issues

• Can use a more complex model:
 • Better basis for prediction
 • Semi-empirical models e.g. Guan et al. (2015), Zhang et al. (2018)
 • More mechanistic models e.g. Koffi et al. (2015), Norton et al. (2018)

We use the SCOPE model embedded within the land surface model BETHY to simulate SIF and GPP globally.
• This provides a mechanistic relationship between SIF and GPP
• So, the relationship is described by processes, not linear scaling parameters
Our Data Assimilation Framework

- We use a variational data assimilation system:
 - Apply a quasi-Newton minimization algorithm (Tarantola, 2005)
 - It is iterative
 - The Jacobian (sensitivities) is re-calculated after each iteration to account for non-linearities (this has a large computational demand)

Minimizes a global cost function that describes the mismatch between the model and observations weighted by their uncertainties.
The BETHY-SCOPE Model

- Simulates SIF and GPP globally at 2° x 2°
- 13 PFTs (can have 3 PFTs per pixel)
- BETHY provides the infrastructure to simulate SCOPE globally.
 - It can also simulate prognostic LAI and provide it to SCOPE.
- SCOPE simulates SIF and GPP
 - It is 1D (i.e. no horizontal variation in canopy structure)
 - Not a full SVAT model, but it simulates SIF mechanistically
- Process parameters can be PFT-specific (e.g. V_{cmax}), PFT-grouped (e.g. LIDF) or global (e.g. Michaelis-Menten kinetic constants).
- Leaf Area Index (LAI) is prescribed
 - We use “MODIS Improved” dataset (Yuan et al., 2011)

For more information see: Rayner et al. (2005); Knorr et al. (2010); Koffi et al. (2015); Norton et al. (2018)
OCO-2 SIF

- Gridded to 2° x 2° and monthly scales
- We use:
 - 2015 for optimization/calibration
 - Sep-Dec 2014 for validation
- Calculated uncertainties:
 - We don’t use the standard error
 - Calculated uncertainties are between standard error and average of single measurement precision error
- Data over water (IGBP) are omitted
Model vs Observations: Prior

For calibration period (2015)

\[
SIF \text{ Residual} = \text{Model} - \text{Observed}
\]

\[
SIF \text{ Mismatch} = \frac{\text{Model} - \text{Observed}}{\text{Uncertainty}}
\]
Model vs Observations: Posterior

For calibration period (2015)

\[SIF \text{ Residual} = \text{Model} - \text{Observed} \]

\[SIF \text{ Mismatch} = \frac{\text{Model} - \text{Observed}}{\text{Uncertainty}} \]
Model vs Observations

Prior
(2015)

Posterior
(2015)
Model vs Observations: Validation

Prior
(Sep-Dec 2014)

Posterior
(Sep-Dec 2014)
An optimal fit, given the uncertainties, will give:

\[\chi^2 = 1 \]

Calibration period (2015):

- Prior: \[\chi^2 = 2.24 \]
- Posterior: \[\chi^2 = 1.18 \]

Validation period (Sep-Dec 2014):

- Prior: \[\chi^2 = 2.10 \]
- Posterior: \[\chi^2 = 1.04 \]

We are fitting the data well and not overfitting!
Optimized Parameters

42 parameters are exposed to the optimization: each is represented by a Gaussian PDF.

Following the assimilation of SIF:

• Chlorophyll content decreases (except C3 grass):
 • Posterior estimates range from 1-13 μg cm\(^{-2}\)
 • Strong reduction of uncertainty (typically around 90%)

• \(V_{c_{\text{max}}}\) generally increases:
 • Posterior estimates range from 11-125 μmol m\(^{-2}\) s\(^{-1}\)
 • Weak reduction of uncertainty (typically < 10%)

• Little change in other physiology parameters (e.g. \(K_{c}\), \(K_{o}\))
• Varied changes to canopy structure (e.g. LIDFa, LIDFb)

Remember that LAI is prescribed and therefore fixed.
SIF-Optimized GPP (2015)

- Increase in extra-tropics.
- Decreases in dry tropics (forests + grasslands).
- Little change in wet tropical forests.

Overall increase in global annual GPP from
128 Pg C → 137 Pg C
SIF-Optimized GPP (2015)

The uncertainty in GPP due to uncertain parameters is reduced by 65% by the SIF observations.

- Global annual GPP:
 - Prior = 128 ± 17 Pg C
 - Posterior = 137 ± 6 Pg C
Overall the spatial patterns look reasonable. Compared to other GPP estimates, our SIF-optimized GPP is:

- Relatively high in the tropics and the temperate north
- Higher than FLUXCOM GPP almost everywhere (except north of 65° N)

Global GPP:

- Prior = 128 Pg C
- Posterior (SIF) = 137 Pg C
- TRENDY = 142 Pg C
- FLUXCOM = 103 Pg C
What causes the change in GPP following the SIF assimilation?

- APAR decreases globally
 - Due to decline in chlorophyll
- LUE increases globally
 - Due to decline in APAR
 - Due to increase in $V_{c_{\text{max}}}$
The model struggles to simultaneously fit low and high SIF values (> 1.0 W m\(^{-2}\)).

Remaining Challenges

- Ecosystems with a large seasonal cycle in OCO-2 SIF show the largest model-observed mismatch. Why?
 - Parameters (e.g. chlorophyll, \(V_{cmax}\), LIDF) probably vary seasonally, we keep them constant.
 - Issues with prescribed LAI?
 - Issues with spatial averaging differences between SIF, LAI, climate variables?
Remaining Challenges

• The model struggles to simultaneously fit low and high SIF values (> 1.0 W m⁻²).
 → Seasonal variation in parameters would help fit the data and be more realistic.
Remaining Challenges

- The model struggles to simultaneously fit low and high SIF values (> 1.0 W m\(^{-2}\)).
 - Seasonal cycle in LAI is vastly different to SIF in some regions
 - Shown here: SIF peaks in July-August but LAI peaks in November (LAI retrieval issues?)
Remaining Challenges

• Validating parameters (e.g. chlorophyll, $V_{c_{max}}$) and derived variables (e.g. APAR, LUE).
 → Very challenging at this scale!
 → We could evaluate against site-based data: issues with representativity
 → We could evaluate chlorophyll against the MERIS Terrestrial Chlorophyll Index
 → We’re open to suggestions!
Remaining Challenges

• Validating GPP

→ Also very challenging at this scale

→ Test: Does the SIF-optimized model improve our match with atmospheric CO$_2$ or COS?

→ Comparison with FLUXCOM GPP over North America and Europe (where density of flux towers is higher) suggest the general patterns are decent:
 • The correlation with FLUXCOM GPP improves following the SIF assimilation.
 • However, the SIF-optimized GPP magnitude is larger.
 • We wouldn’t do this for the tropics!

North America

R^2 (prior) = 0.80 \hspace{1cm} R^2$ (post.) = 0.86

Europe

R^2 (prior) = 0.77 \hspace{1cm} R^2$ (post.) = 0.83
Next Steps

- Interannual variability: can the optimized model capture IAV in SIF?
- Conduct a similar optimization at sites.
- Use complementary observations (e.g. FAPAR, NIRv): use these to constrain chlorophyll and/or LAI first.
Thank you!

