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Outline

1) Solar Induced Fluorescence (SIF)
2) Difficulties with SIF
3) Other vegetation indices (NDVI, EVI, NIRv)

4) Defining an “objective” MODIS best product for photosynthesis
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Solar Induced Fluorescence

During photosynthesis a plant absorbs energy through its chlorophyll

% used for ecosystem gross
primary production (GPP)

visible
% lost as heat 100% : ) Reflectance ~11%
% re-emitted (SIF: byproduct) Crioopnyl- 5,
Relationship between GPP [l ar 'Phdtﬁﬁyﬁthes‘ls
and SIF is ~ linear L B ¢ 5, selho ton_ o

Heat 20%

Transmittance ~11%

Responds to stressors (water, light, T)

Now observable from space (GOSAT, GOME-2, OCO-2, TROPOMI)
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Solar Induced Fluorescence (SIF)

Data sampling
(a) OCO-2 (Nadir) (b) OCO-2 (Glint)
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Fig. 1. Illustration of the spatial distribution of the data acquisition, i.e., the number of soundings (represented by colors), of OCO-2, GOSAT-FTS, and GOME-2 onboard MetOp-A, using
July 2015 as an example. The level 2 retrieval is aggregated to 0.1° x 0.1°, roughly equivalent to the OCO-2 swath widths (~10 km) in mid-latitude such as US.
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Solar Induced Fluorescence (SIF)
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Solar Induced Fluorescence (SIF)

A

Flux Tower GPP (gCm2d™)

Relationship with ecosystem GPP
~ linear (slope varies though)
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Solar Induced Fluorescence (SIF)

Relationship with global GPP retrieval
~ linear (slope varies though)
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Success with SIF

Tropics: Vegetation drought stress in the Amazon using GOSAT
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Success with SIF

Tropics: Vegetation drought vs aridity stress in the Amazon using GOME-2
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https://doi.org/10.1038/s41561-018-0133-5

Success with SIF

Cold climates: phenology
NDVI exaggerates seasonal cycle

(a) Eurasia deciduous forest (b) Eurasia evergreen forest I
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Success with SIF

GPP (CO; uptake) is directly related to transpiration 7~
(H,O release) G, Plant

GPP =wueT

SIF might thus a good proxy for T (main ET flux)
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Success with SIF

Flux retrieval using machine learning and GOME-2 SIF: WECANN

Evapotranspiration

o0 (a) LE (DJF) o (b) LE (MAM)
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Success with SIF

Flux retrieval using machine learning and GOME-2 SIF: WECANN

(a) R2 between WECANN and FLUXNET in situ observations for ET
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Success with SIF

Flux retrieval using machine learning and GOME-2 SIF: WECANN
Nice interannual variability (unlike FLUXCOM or FLUXNET-MTE)

Russia, 2010

Texas, 2011

US Corn Belt, 2012

Alemohammad, S. H. et al. Water, Energy, and Carbon with Artificial Neural Networks (WECANN). Biogeosciences 14, 4101-4124 (2017)

LE H GPP
T SR e T 1
S %@a <8 :

=

-

&5 Coru

IA|ENG

14 | RSIF

Available at www.gentine.com.

TN Th

hool of E

INEERING
ing and

and Applied Science



So we are all good, right?

Nope
SIF has disadvantageous: main ones
- Very very noisy
- Coarse scale

GOME-2 JJIA

15 | RSIF &5 COLUMBIA | ENGINEERING

7N The Pu Foundation School of Enginecring and Applied Science



What are our options?

Use vegetation indices instead
- NDVI:
Issue: saturates very quickly, very sensitive to snow, basically color only
- EVI:
improved NDVI but share same issues
-NIRy=NIRefiectance-NDVI
looks promising
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But:
- Still based on NDVI (share some issues — snow)
- No radiation information: Only reflectance, not a flux (only correlated with it)
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https://doi.org/10.1126/sciadv.1602244

What are our options?

We want an objective assessment of GPP
Let us go back to the basics (light use efficiency a la Monteith)
GPP = LUE,.fPAR,.PAR
Similarly
SIF = Yield.fPARg,.PAR

< Incoming PAR o
£ f =
g r Reflected and
f { transmitted PAR
<t L
g E
- Absorbed PARby Canopy (APAR_, o) :
N h heti E
on-photosynthetic e
> Chiorophll vegetation (NPV)
W Absorbed PAR by Chlorophyll (APAR )
=2
- SIF Heat (NPQ) ._E
Electronransport (PQ) Light reactions 5
Photorespiration Dark reactions
alternative pathways
GPP

So SIF = Yield/ LUE, . GPP
If Yield, LUE, are not varying much then fPAR,.PAR is a good proxy for GPP (and SIF)

Zhang, Y., Xiao, X., Wolf, S., Wu, J., Wu, X., Gioli, B., et al. (2018). Geophysical Research Letters, 45(8), éﬁ C ‘ E
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What are our options?
Is fPAR, a good proxy for SIF/PAR?

Mostly yes
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How can we define an objective product?

Obijective:
Try to reproduce SIF/PAR ~ fPAR, with MODIS
Called Reconstructed SIF (RSIF)
Based on GOME-2 v26 Joiner SIF
PAR: BESS product (Ryu et al. 2017)

o _#

Reconstructed
MODIS @ 9 — SIF
channels @ (RSIF)

S
@

o’

@ Input Layer (@ Hidden Layer @ Output Layer

Daily APAR(p, = PARg,i1, - RSIF / PARo.30am

Gentine, P., & Alemohammad, S. H. (2018). RSIF (Reconstructed Solar Induced Fluorescence). Geophysical
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How can we define an objective product?

Corr(RSIF,SIF)
Mean=0.623
T

Corr(SIF,GPP FLUXNET-MTE)
Mean=0.881 Mean=0.647

Better against
FLUXNET-MTE

Corr(RSIF,WECANN) Corr(SIF,WECANN)
Mean=0.807 Mean=0.728
Better with
WECANN which
uses SIF ©
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Example: Nile
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Example: Nile

RSIF reduces noise
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Example: Nile

Can go to higher resolution (500m) ©
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US-Ne1

RSIF site comparisons
\

an /\/, |
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2007 2008 2009 2010 2011 2012 2013 2014
Year

US-Ha1

2007 2008 2009 2010 2011 2012 2013
Year

Not impacted by snow,
Can track seasonal dryness in California (no need for LUE, change)
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Comparison with vegetation indices

90 percentile of RSIF (mW/m?/sr/nm) 90 percentile of NDVI
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Can pick up peak in GPP in Ag region like SIF but unlike NDVI/EVI
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Next steps

Still several (important) steps for GPP:

 What we see includes: Radiation attenuation/escape factor (PFT and
atmosphere dependent)

* Initial GOME-2 estimate has issues/biases: use another better (higher
Signal/noise) estimate e.g. 0CO-2, TROPOMI

* More bands? Hyperspectral
* Are LUE., important? Can we observe them?

Zhang, Gentine et al. submitted
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