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Motivation: What are current approaches to 
estimate global GPP? strengths/challenges? 

u Machine learning typically trains to predict GPP from eddy covariance data (100+ sites, 
gold standard) with satellite and meteorological data inputs; works well but doesn’t 
provide a physical basis for understanding; Which are the most important data?

u Light-use Efficiency (LUE) models use satellite and meteorological data: 
GPP = PAR * fPARchl * LUE,

u fPARchl = fraction of absorbed photosynthetically active radiation) 

u how good are the LUE parameterizations (e.g., do they create features that are (not) supported 
by eddy covariance observations)?

u Terrestrial biology models (TBMs) vary in their performance and need evaluation with 
data-driven approaches.

u Assimilation and SIF-based estimates (with optional downscaling) are newer approaches, 
but how good are they? need comparison with other approaches



Carbon fluxes in terrestrial ecosystems and 
relationship to satellite remote sensing

Net Ecosystem Exchange 
NEE = GPP + Reco

PARTOA

PARIn

Reflected 
light -> 
fPARchl

Solar-induced 
fluorescence (SIF)

Ecosystem Respiration 
Reco = Rsoil + Rplants

!

GPP



Motivation: Why do we need another 
GPP estimate? Questions to consider:

u How well can we do just with satellite reflectances? Angle (BRDF) adjusted?
u Use vegetation indices? and from what source, e. g., from composites? 
u Deriving fAPARchl (Q. Zhang et al.) with MODIS reflectances works well but computationally 

intensive to produce. Is there a simple data-driven approach (linear band combination)? 
u What value can fluorescence (SIF) add? 
u What are most important LUE drivers? Is there a straight-forward way to compute LUE?
u On what time scales can we accurately estimate GPP with satellite data? Monthly? Daily? 
u What spatial scale is needed to evaluate or train with eddy covariance flux tower data? 
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Basic Light Use Efficiency (LUE) Approach

u LUE concept: GPP = PARIN *    fPARchl *    LUEp

u Similar for SIF:  SIF =   PARf *   fPARchl,f *   LUEf *  fesc

u Many studies show GPP-SIF correlation
(weekly to monthly time scales, but scaling factor varies)

CERES or 
assimilation

MODIS or 
similar

Parameterization
(meteorological, satellite data)



Considerations: SIF vs. Reflectances

u Large signal in reflectances (NIR – Red); Easy to measure (low spectral 
resolution bands), sensitive to clouds

u Small SIF signal requires high spectral resolution  -> lower temporal and 
spatial resolution, but less sensitive to clouds

u Both sensitive to fPARchl, but SIF also sensitive to PARIN.
u SIF ~ linear with GPP (weekly to monthly), but scaling factor varies, 

complicated by fesc and LUEf

u SIF shows more sensitivity to high yield (C4) crops such as corn
u Can we utilize the assets of both?



Modified (simplified) LUE Approach

u 1) GPP =   fPARchl *  PARIN *   LUE , where LUE is function of meteorological parameters.

u 2) GPP =~ fPARchl *  PARTOA ( *   LUE’), where LUE’ is optional & a function of reflectances

u LUE dependence on PAR is important (diurnal, cloud effects)!
u PARTOA ⍺ PARIN * LUE implicitly accounts for LUE variation with PAR to keep GPP nearly 

constant over a wide range of PAR (implied by earlier works for croplands by Peng and 
Gitelson)

u Majority of stress effects are reflected in fPARchl (e.g., leaf curling, loss of chlorophyll) 
which occurs relatively quickly (within days to a few weeks of stress onset)

u LUE’ can be (optionally) parameterized as a function of fPARchl (or NDVI) to account for 
additional stress effects (moisture, temperature, radiation, nutrients) – accounts for very 
small amount of GPP variability



Vegetation indices as proxies 
for fPARchl: What are the 
issues?

u NDVI= (RNIR – Rred)/(RNIR + Rred); R: Reflectance
u NDVI /= 0  for background (soils, branches, etc.)
u Subtracting an constant offset from NDVI isn’t the right thing to do (isn’t necessary at high NDVI 

values). Instead, we subtract and phase out an offset value N0 linearly with NDVI up to 
NDVI=0.7, i.e., NDVI’=NDVI – f(N0). 

u How to determine N0? We tried using SIF (at lower spatial resolution) and GPP at flux sites, but 
ultimately settled on a constant value of 0.25. 

u What about the NDVI “saturation problem” at high NDVI values?
u EVI is a similar 3 band index intended to improve upon NDVI (used in VPM)
u NIRV=(NDVI – 0.08) * RNIR 

u How well does a simple linear combination of band reflectances work better?
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Data sets used for GPP estimation
Input Dataset Temporal Resolution Spatial Resolution Use

MCD43D reflectances
Schaaf et al.

daily 0.0083∘×0.0083∘ ~1 km Indices -> fPARCHL

GOME-2 SIF* (downscaled)
Duveiller & Cescatti, 2016

monthly 0.05∘×0.05∘ GPP proxy (adjusted 
for daily PAR)

GOME-2 SIF
Joiner et al., 2013, 3016

monthly 0.5∘×0.5∘ Identify high 
productivity areas

CERES or GEOS-DAS any 0.5∘×0.5∘ PARIN

NIRV x SWTOA any any GPP proxy

NDVI’ x SWTOA any any GPP proxy

FLUXNET 2015 GPP Daily, monthly Site footprint ~1 km Training, evaluation

VPM GPP (LUE model)
Y. Zhang et al., 2017

monthly 0.05∘×0.05∘ Baseline evaluation

FLUXCOM GPP(ML) 
Tramontana et al., 2016

8-day 0.083∘×0.083∘ Baseline evaluation



FLUXNET 2015 Tier 1 eddy covariance sites 
(free and open use)

u Covers a wide 
range of 
ecosystems

u Sparse coverage 
over some 
continents and 
regions (e.g., 
tropical rain forests, 
high latitudes)
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Things we tried that didn’t work so well

u Using MOD09 reflectances (BRDF-adjusted data sets 
MCD43 NBAR and MAIAC worked better)

u Using MOD15 fPAR (and MOD17 GPP based on it)
u Using MOD13 NDVI (max value) composited data sets
u Using CERES/MERRA-2 SW as PARIN with constant or simple 

LUE (PARTOA works better)
u Using NIRV without any account of PAR
u Accounting for SIF escape (SZA dependence) using simple 

MODIS reflectance-based approach



Why does using PARTOA work better?

u Plants are adjusting their 
efficiency such that GPP stays 
relatively constant over a wide 
range of PAR where most of the 
days fall 

(Higher LUE at lower PAR; lower PAR 
corresponds to cloudy days with 
more diffuse light)

Symbols for 
different site-
years 

15 day period in July 
(~static vegetation)
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Monthly GPP, 5 km: SIF* versus NDVI- and 
NIRV-based (evaluation vs independent sites)
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Zero-offset problem in 
early version of GOME-
2 SIF (now corrected)

Number of points

Mainly 
sites in US 
cornbelt



8-day GPP, ~1 km, linear combination 
of bands versus NDVI-based

Mainly 
sites in US 
cornbelt

Number of points



Locations with high (normalized) SIF to 
NDVI ratios
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• separate fits for

1. these points 
2. all others 

• Additional parameterization of LUE to 
account for photoperiod and stress effect 
on LUE
• Tried several approaches including use 

of PAR and NDVI
• Best results with polynomial in NDVI

Dual fit, variable LUE - ”FluxSat” ( “SatFlux”)



8-day 1 km GPP, dual fit (FluxSat)

Number of points



Monthly, 5 km GPP comparison with VPM

Number of points



8-day, 8 km GPP comparison with FLUXCOM-RS

Training data set matters?! FLUXCOM used an older FluxNet data set.
Number of points



How well do the data sets capture  
interannual variations (anomalies)?

Anomalies normalized by GPP seasonal range (fractional, unitless)

Number of points



How well do data sets capture site-to-
site (spatial) variability?

Each point is an annual mean for a single site



DBF+MF (n=4143, r2= 0.830)
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July 2007 8-day average GPP

July 2007    FLUXCOM-RS FluxSat-7



GPP 8 day average January 2007

FluxSat-7January 2007     FLUXCOM-RS



2007 Annual average GPP

140.8 Pg C / yr125.0 Pg C / yr

Vegetation Photosynthesis Model (VPM) FluxSat-7



Are high FluxSat values in tropics and 
high latitudes supported by FLUXNET?
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Annual mean GPP, model comparison (2003-2017)

FluxSat (SatFlux, version 1) is 
publicly available from the AVDC 
website:
https://avdc.gsfc.nasa.gov

Go to Data and Archive menus

FluxSat

Courtesy Eunjee Lee, Fan-Wei Zeng, Randy Koster GMAO

https://avdc.gsfc.nasa.gov/


Summary

u We developed a simplified LUE approach to estimate global GPP with satellite data using assets 
of MODIS reflectanaces and SIF (FluxSat) trained using latest FLUXNET 2015 data set

u FluxSat performs as well or better than other more complex formulations (as compared with 
independent FLUXNET data)

u FluxSat estimates 2007 global annual GPP at 140.8 Pg C / yr - generally higher than other 
satellite-based estimates but comparable to many TBM estimates.

u Still investigating details of multi-year data set and expect improvements in the future.

u Jury still out as to whether or not satellite driven SIF-based estimates can outperform reflectance-
based GPP estimates.

u Need more flux towers in under-observed regions such as tropical rain forests



Backups



Correlation of NDVI and 
root-zone soil moisture 
(RZM) weekly anomalies 
(indicated by ‘). Gray 
areas are where 
correlations are not 
statistically significant. 
Highest correlations in 
semi-arid regions.

Time lags in days of NDVI 
with respect to root-zone 
soil moisture (RZM) 
weekly anomalies. 
Positive numbers are 
where NDVI’ lags RZM’. 
Typically lags are days to 
a few weeks.

From Joiner et al., Rem. Sens. Environ., 
2018
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MODIS
BRDF-

adjusted
reflectances
(MCD43D)

FLUXCOM-RS or 
VPM  GPP (driven 

by MODIS and 
other data)

GOME-2 SIF
SIF* 

downscaled 
with MODIS 

FLUXNET 2015 
GPP Tier 1 odd 
numbered sites

(for training)

FLUXNET 2015 
GPP Tier 1 even 
numbered sites
(for evaluation)
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