A simple data assimilation approach for constraining global scale modeled GPP using GOME2 SIF data

> Natasha MacBean Indiana University

Fabienne Maignan, Cédric Bacour, Philip Lewis, Luis Guanter, Philipp Köhler, Philippe Peylin, José Gomez-Dans, Mat Disney

# Outline

#### > Motivation for this research

- ORCHIDEE Data Assimilation System (ORCHIDAS) and past studies
- > SIF DA set-up and results
- > Perspectives and future directions...

## Remaining uncertainty in terrestrial carbon sink



#### How important are carbon-climate feedbacks?

- Earth System Model (ESM) sensitivity analysis 1 model & 1 scenario (HadCM3 – SRES-A1B)
- Altered atmospheric physics parameters
- Compared to terrestrial carbon cycle parameters



# Remaining uncertainty in current model estimates and future projections – gross C uptake (GPP)

#### Mean annual GPP (gCm<sup>-2</sup>yr<sup>1</sup> 1990-2009)



- Same climate forcing & vegetation map
- Different GPP spatial distribution
- Different GPP magnitude

Anav et al. (2015)

= Uncertainty due to model processes/parameters

200

# Remaining uncertainty in current model estimates and future projections – *leaf phenology*



#### Seasonal leaf dynamics (Leaf Area Index – LAI) at Morgan Monroe Forest



Richardson et al. (2012)

## What is a land surface/terrestrial biosphere model?



http://www.cesm.ucar.edu/models/clm/

## Improving models | Reducing uncertainty → the model development cycle

Model application



Adapted from Williams et al. (2009)

## Improving models | Reducing uncertainty → the model development cycle

Model application



# Outline

#### > Motivation for this research

#### ORCHIDEE Data Assimilation System (ORCHIDAS) and past studies

- > SIF DA set-up and results
- Perspectives and future directions...

#### ORCHIDEE terrestrial biosphere models (TBMs)



Natasha MacBean – OCO-2 Telecon – 16th October 2018

## Reducing uncertainty: the need for model – data integration

#### Available C-related data streams





## Reducing uncertainty: the need for model – data integration

#### Available C-related data streams



## Global Data Assimilation System – ORCHIDEE LSM



https://orchidas.lsce.ipsl.fr

## Global Data Assimilation System – ORCHIDEE LSM



## Satellite NDVI to constrain leaf seasonal dynamics





- Satellite NDVI compared to modeled fraction of absorbed photosynthetic radiation (FAPAR)
- $\succ$  FAPAR  $\rightarrow$  LAI via Beer Lambert Law
- 4 6 parameters per plant functional type (PFT)

N. MacBean et al. (2015) Using satellite data to improve the leaf phenology of a global Terrestrial Biosphere Model, Biogeosciences, 12, 7185-7208

## Satellite NDVI to constrain leaf seasonal dynamics



> 15 random grid points per PFT

N. MacBean et al. (2015) Using satellite data to improve the leaf phenology of a global Terrestrial Biosphere Model, Biogeosciences, 12, 7185-7208

#### Improvement in modeled leaf senescence...



N. MacBean et al. (2015) Using satellite data to improve the leaf phenology of a global Terrestrial Biosphere Model, Biogeosciences, 12, 7185-7208

#### Dramatic reduction in growing season length



N. MacBean et al. (2015) Using satellite data to improve the leaf phenology of a global Terrestrial Biosphere Model, Biogeosciences, 12, 7185-7208

#### But not much change in GPP magnitude...



## Constraining "fast" processes using FLUXNET data





- ➤ NEE (and LE) → not gross C fluxes
- optimized "fast" Crelated parameters (photosynthesis, respiration), phenology, water stress & some energy balance
- ➤ ~60 sites overall
- Improved fit to mean seasonal cycle

Kuppel et al. (2014) Model-data fusion across ecosystems: from multi-site optimizations to global simulations, Geosci. Model Dev., 7, 2581-2597

## Outline

- > Motivation for this research
- ORCHIDEE Data Assimilation System (ORCHIDAS) and past studies
- > SIF DA set-up and results
- > Perspectives and future directions...

#### New data streams! Solar-induced chlorophyll fluorescence (SIF)



- Appears to be a linear relationship between SIF and GPP at large spatial (>0.5°) & temporal (~monthly) scales
- Slope dependent on vegetation type/structure
- Damm et al. (2015); Zhang et al. (2016); Goulas et al., (2017); Verma et al. (2017); Wood et al. (2017)



Guanter et al. (2012)

### Optimization set-up

Assume simple empirical linear relationship between GPP and SIF:

SIF = a GPP + b

- Use GOME2 SIF data (Köhler et al., 2015)
  - monthly aggregated SIF, 0.5x0.5° resolution, 2007-2011
- Constrain 'a' and 'b' (slope and offset) parameters of linear GPP SIF relationship in addition to 6 photosynthesis and 9 phenology parameters for ALL vegetated PFTs
- ▶ 15 grid cells chosen randomly per PFT (where obs available) (fractional cover > 0.6)
  → all 12 vegetated PFTs = total 180 sites
- 12-16 parameters per PFT
- Multi-site optimization performed for each PFT
- Prior obs uncertainty (R) set to RMSE between model & data
- Parameter uncertainty (B) 40% of range
- ➢ Impact at global scale → global simulations following standard protocol (spinup + transient). Cf Jung et al. MTE-GPP



### SIF data constraint reduces GPP magnitude





- Decrease in global GPP magnitude for all PFTs
- ...except for moisturedriven PFTs
- ➢ Highest decrease in NH extra tropics → shift in global GPP distribution
- Strong reduction in uncertainty (~83%)

| Region/PFT                     | Prior mean<br>annual GPP (PgC) | Posterior mean<br>annual GPP (PgC) | Reduction in annual<br>GPP uncertainty (%) |
|--------------------------------|--------------------------------|------------------------------------|--------------------------------------------|
| Global                         | 194.4                          | 165.6                              | 82.8                                       |
| Temperate + boreal<br>KG biome | 88.6                           | 67.1                               | 67                                         |
| Tropical KG biome              | 92.2                           | 86.1                               | 93.4                                       |
| Arid KG biome                  | 13.6                           | 12.4                               | 88.9                                       |

## Shifts in spatial distribution (important for global C sink)



MacBean, N. et al. (2018), Strong constraint on modelled global carbon uptake using solar-induced chlorophyll fluorescence data, Scientific Reports, 8, 1973.

### SIF data assimilation *does* reduce GPP magnitude



MacBean, N. et al. (2018), Strong constraint on modelled global carbon uptake using solar-induced chlorophyll fluorescence data, Scientific Reports, 8, 1973.

#### Parameter constraint



#### Phenology



#### Parameter constraint





#### Linear SIF-GPP reln parameters





#### Parameter covariance



### Comparison to NDVI and FLUXNET NEE



MacBean, N. et al. (2018), Strong constraint on modelled global carbon uptake using solar-induced chlorophyll fluorescence data, Scientific Reports, 8, 1973.

## Comparison to NDVI and FLUXNET NEE



MacBean, N. et al. (2018), Strong constraint on modelled global carbon uptake using solar-induced chlorophyll fluorescence data, Scientific Reports, 8, 1973.

#### Annual time series and anomalies



Natasha MacBean – OCO-2 Telecon – 16<sup>th</sup> October 2018

# SIF helps us constrain GPP global magnitude and spatial distribution



MacBean et al. (2015) - NDVI vs MacBean et al. (2018) - SIF.

## Outline

- Motivation for this research
- ORCHIDEE Data Assimilation System (ORCHIDAS) and past studies
- > SIF DA set-up and results
- Perspectives and future directions...

#### Future work in the ORCHIDAS group... Implementation of SCOPE (and a note on model complexity)



#### Upcoming paper by Bacour et al.

van der Tol et al.

# Challenges and progress in using multiple datasets to constrain models



Agricultural and Forest Meteorology

The potential benefit of using forest biomass data in addition to carbon and water flux measurements to constrain ecosystem model parameters: Case studies at two temperate forest sites

T. Thum<sup>a,\*</sup>, N. MacBean<sup>b</sup>, P. Peylin<sup>b</sup>, C. Bacour<sup>c</sup>, D. Santaren<sup>b</sup>, B. Longdoz<sup>d</sup>, D. Loustau<sup>e</sup>, P. Ciais<sup>b</sup>





#### Journal of Geophysical Research: Biogeosciences

Joint assimilation of eddy covariance flux measurements and FAPAR products over temperate forests within a process-oriented biosphere model

C. Bacour<sup>1,2</sup>, P. Peylin<sup>2</sup>, N. MacBean<sup>2</sup>, P. J. Rayner<sup>2,3</sup>, F. Delage<sup>2,4</sup>, F. Chevallier<sup>2</sup>, M. Weiss<sup>5</sup>, J. Demarty<sup>5,6</sup>, D. Santaren<sup>7,8</sup>, F. Baret<sup>5</sup>, D. Berveiller<sup>9</sup>, E. Dufrêne<sup>9</sup>, and P. Prunet<sup>1</sup>

Geosci. Model Dev., 9, 3569-3588, 2016

Consistent assimilation of multiple data streams in a carbon cycle data assimilation system

Natasha MacBean<sup>1</sup>, Philippe Peylin<sup>1</sup>, Frédéric Chevallier<sup>1</sup>, Marko Scholze<sup>2</sup>, and Gregor Schürmann<sup>3</sup>

#### Future work in the ORCHIDAS group... OCO-2 & TROPOMI? SIF + NDVI? SIF + LAI? SIF + PRI? SIF + COS? SIF + NEE?









Resolve any inconsistencies between SIF datasets and between SIF and other data *...and crucially -- with model !* 

OCO-2

See upcoming paper by Bacour et al.

#### Different relationships across scales? → If so, how do we account for that in a process-based model and DA system?



Relationships across scales

#### Global scale questions also relevant at local scales

Ecosystem-level processes important for larger scales

# Ongoing/future work using SIF in the ORCHIDEE group







#### New "gap fraction" model

ORCHIDEE-CAN: Naudts et al. (2015) Geosci. Model. Dev., 8, 2035-2065ß





#### New radiative transfer/albedo scheme

Otto et al. (2014) BG







### Summary

- Revised simulated global GPP budget consistent with ORCHIDEE structure (by optimising parameters as well as SIF – GPP relationship)
- SIF appears to provide stronger (parameter) constraint on GPP than NDVI or FLUXNET
- ➢ Most constraint on magnitude (peak) and shorter GSL in NH → change in global GPP distribution
- > No considerable change in trends on IAV
- Lots of work still to be done, especially regarding consistencies between datasets.

# Thank you for listening! Any questions?



**European Space Agency** 



#### https://macbeanlab.com/ nmacbean@indiana.edu



Cédric Bacour cedric.bacour@lsce.ipsl.fr



Fabienne Maignan maignan@lsce.ipsl.fr



Philippe Peylin peylin@lsce.ipsl.fr

