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• Global GPP estimates vary widely (see review by Anav et al. 2015)

• Observations need to be better integrated with predictive models

Estimating Global GPP

Anav et al. (2015)
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• Linear relationship at monthly timescale 

• Slope can vary with ecosystem type and environmental conditions

GPP and SIF
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• Can use a simple linear scaling (e.g. Macbean et al. 2018):
• This may omit some important non-linearities

• Cause additional equifinality issues

• Can use a more complex model:
• Better basis for prediction

• Semi-empirical models e.g. Guan et al. (2015), Zhang et al. (2018)

• More mechanistic models e.g. Koffi et al. (2015), Norton et al. (2018)

We use the SCOPE model embedded within the land surface model BETHY to simulate SIF and GPP 
globally. 

• This provides a mechanistic relationship between SIF and GPP

• So, the relationship is described by processes, not linear scaling parameters

Using SIF to Constrain GPP 4
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Algorithm

Estimate GPP

Minimizes a global cost function 
that describes the mismatch 
between the model and 
observations weighted by their 
uncertainties.

Our Data Assimilation Framework

• We use a variational data assimilation system:
• Apply a quasi-Newton minimization algorithm (Tarantola, 2005)

• It is iterative

• The Jacobian (sensitivities) is re-calculated after each iteration to 
account for non-linearities (this has a large computational demand)
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The BETHY-SCOPE Model

• Simulates SIF and GPP globally at 2° x 2°

• 13 PFTs (can have 3 PFTs per pixel)

• BETHY provides the infrastructure to simulate SCOPE globally.
• It can also simulate prognostic LAI and provide it to SCOPE.

• SCOPE simulates SIF and GPP
• It is 1D (i.e. no horizontal variation in canopy structure)

• Not a full SVAT model, but it simulates SIF mechanistically

• Process parameters can be PFT-specific (e.g. V
cmax

), PFT-grouped (e.g. LIDF) or global (e.g. 
Michaelis-Menten kinetic constants). 

• Leaf Area Index (LAI) is prescribed 
• We use “MODIS Improved” dataset (Yuan et al., 2011)

For more information see: Rayner et al. (2005); Knorr et al. (2010); Koffi et al. (2015); Norton et al. (2018)
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OCO-2 SIF

• Gridded to 2° x 2° and monthly scales

• We use:
• 2015 for optimization/calibration

• Sep-Dec 2014 for validation

• Calculated uncertainties:
• We don’t use the standard error

• Calculated uncertainties are between standard error 
and average of single measurement precision error

• Data over water (IGBP) are omitted

Mean SIF for 2015

The SIF Observations 7



Model vs Observations:   Prior

 
 

For calibration period (2015)
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Model vs Observations:   Posterior

For calibration period (2015)
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Model vs Observations
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Model vs Observations:   Validation
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Optimization

 

•  

12



Optimized Parameters

42 parameters are exposed to the optimization: each is represented by a Gaussian PDF. 

Following the assimilation of SIF:

• Chlorophyll content decreases (except C3 grass):
• Posterior estimates range from 1-13 μg cm-2

• Strong reduction of uncertainty (typically around 90%)

• V
cmax

 generally increases:
• Posterior estimates range from 11-125 μmol m-2 s-1

• Weak reduction of uncertainty (typically < 10%)

• Little change in other physiology parameters (e.g. K
C
, K

O
)

• Varied changes to canopy structure (e.g. LIDFa, LIDFb)

Remember that LAI is prescribed and therefore fixed.
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SIF-Optimized GPP (2015)

 

 

 

• Increase in extra-tropics.
• Decreases in dry tropics (forests + grasslands).
• Little change in wet tropical forests.

Overall increase in global annual GPP from 
128 Pg C   →   137 Pg C
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SIF-Optimized GPP (2015)

 

The uncertainty in GPP due to uncertain parameters is 
reduced by 65% by the SIF observations.
• Global annual GPP:  

Prior     =  128 ± 17 Pg C 
Posterior  =  137 ± 6 Pg C
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SIF-Optimized GPP (2015)

Overall the spatial patterns look reasonable.
Compared to other GPP estimates, our SIF-optimized GPP is:
• Relatively high in the tropics and the temperate north
• Higher than FLUXCOM GPP almost everywhere (except north of 65° N)

Global GPP:
   Prior = 128 Pg C
   Posterior. (SIF) = 137 Pg C
   TRENDY = 142 Pg C
   FLUXCOM = 103 Pg C
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SIF-Optimized GPP (2015)

What causes the change in GPP following the SIF assimilation?
• APAR decreases globally

• Due to decline in chlorophyll
• LUE increases globally

• Due to decline in APAR
• Due to increase in V

cmax

APAR
(% change)

LUE
(% change)
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• The model struggles to simultaneously fit low and high SIF values (> 1.0 W m-2).

Remaining Challenges

Ecosystems with a large seasonal cycle in OCO-2 SIF show the largest model-observed mismatch. 
Why?
• Parameters (e.g. chlorophyll, V

cmax
, LIDF) probably vary seasonally, we keep them constant.

• Issues with prescribed LAI?
• Issues with spatial averaging differences between SIF, LAI, climate variables?
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Remaining Challenges

• The model struggles to simultaneously fit low and high SIF values (> 1.0 W m-2). 

→ Seasonal variation in parameters would help fit the data and be more realistic.

SIF GPP LAI

North America 
Croplands

Northern Africa 
Savanna
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Remaining Challenges

• The model struggles to simultaneously fit low and high SIF values (> 1.0 W m-2).

→ Seasonal cycle in LAI is vastly different to SIF in some regions

→ Shown here: SIF peaks in July-August but LAI peaks in November (LAI retrieval issues?) 

SIF GPP LAI

S.E. Asia 
Tropical Forest
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Remaining Challenges

• Validating parameters (e.g. chlorophyll, V
cmax

) and derived variables (e.g. APAR, LUE).

→ Very challenging at this scale!

→ We could evaluate against site-based data: issues with representativity

→ We could evaluate chlorophyll against the MERIS Terrestrial Chlorophyll Index

→ We’re open to suggestions!
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Remaining Challenges

• Validating GPP

→ Also very challenging at this scale

→ Test: Does the SIF-optimized model improve our match with atmospheric CO
2
 or COS? 

→ Comparison with FLUXCOM GPP over North America and Europe (where density of flux towers is 
higher) suggest the general patterns are decent:

• The correlation with FLUXCOM GPP improves following the SIF assimilation.

• However, the SIF-optimized GPP magnitude is larger.

• We wouldn’t do this for the tropics!

North America

R2 (post.) = 0.86R2 (prior) = 0.80

Europe

R2 (post.) = 0.83R2 (prior) = 0.77
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• Interannual variability: can the optimized model capture IAV in SIF?

• Conduct a similar optimization at sites.

• Use complementary observations (e.g. FAPAR, NIRv): use these to constrain chlorophyll 
and/or LAI first. 

Next Steps

OCO-2 SIF BETHY-SCOPE SIF (post.) BETHY-SCOPE GPP (post.)
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Thank you!
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OCO-2 SIF BETHY-SCOPE SIF (post.) BETHY-SCOPE GPP (post.)
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