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Abstract 

In this paper we present a new linearization of the Radiant radiative transfer model. Radiant uses dis
crete ordinates for solving the radiative transfer equation in a multiply-scattering anisotropic medium 
with solar and thermal sources, but employs the adding method (interaction principle) for the stacking 
of reflection and transmission matrices in a multilayer atmosphere. For the linearization, we show 
that the entire radiation field is analytically differentiable with respect to any surface or atmospheric 
parameter for which we require Jacobians (derivatives of the radiance field). Derivatives of the discrete 
ordinate solutions are based on existing methods developed for the LIDORT radiative transfer models. 
Linearization of the interaction principle is completely new and constitutes the major theme of the paper. 
We discuss the application of the Radiant model and its linearization in the Level 2 algorithm for the 
retrieval of columns of carbon dioxide as the main target of the Orbital Carbon Observatory (OCO) 
mission. 
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1. Introduction 

1.1. Background to radiative transfer linearization 

It is well known that there are many methods to solve for the radiation field in a multilayer 

multiply-scattering anisotropic medium with solar and thermal sources. Techniques include 

the discrete ordinate approach originally pursued by Chandrasekhar [1], the doubling-adding 

method, finite difference methods, spherical harmonics, invariant imbedding, Gauss-Seidel 

iteration, successive orders of scattering, Monte-Carlo methods and others; for a review of 

radiative transfer (RT) solution methods, see for example [2]. Of these methods, a survey of 

the literature reveals that the discrete ordinate and the doubling-adding methods are the most 

widely used. The well-known discrete ordinate DISORT model [3] has became a standard in 

the atmospheric science community. Another discrete ordinate code is LIDORT [4]; this model 

was designed to generate radiances and analytic Jacobians and is fully linearized. In this pa

per, we will employ the linearized LIDORT formulation for the discrete ordinate part of the 

Radiant model. The doubling-adding technique is also known as matrix-operator theory or 

discrete space theory; the formalism is based around the interaction principle of layer adding. 

Doubling refers to the generation of global reflection and transmittance matrices and source 

vectors for two identical layers; adding refers to the interaction principle applied to two layers 

with differing optical properties. Discrete ordinate and doubling-adding methods are closely 

related; for a discussion, see for example [5]. 

For the retrieval of atmospheric and other geophysical quantities from space using nonlinear 
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iterative fitting methods, it is a requirement for the forward model to not only generate simu

lated radiances but also radiance derivatives (variously called Jacobians or weighting functions 

or sensitivity functions) with respect to the state vector retrieval parameters. Analytic deriva

tives are straightforward to generate in radiative transfer transmittance models for infrared and 

microwave retrievals based on line absorption. However, RT modeling with scattered light is 

much more complex and, until fairly recently, radiance derivatives were generated by cumber

some finite-difference methods. The RT calculation of accurate analytic Jacobians in scattering 

models has been addressed recently in a number of papers. These include the family of discrete 

ordinate codes LIDORT [4, 6, 7, 8] with linearization based on complete analytic differentiation 

of the full multilayer discrete ordinate soluution, the LIRA model [9, 10, 11] with linearization 

based on adjoint perturbation methods, the GOMETRAN models [12, 13, 14] with derivatives 

determined by perturbation analysis, and others (e.g. the work of Ustinov [15]). 

The Radiant model [16, 17, 18] was designed to take advantage of the two main methods of 

radiative transfer solution in a multiply-scattering multilayer atmosphere. As such, Radiant is 

a hybrid model consisting of two parts. The first part uses the discrete ordinate approach to 

generate the homogeneous and particular solutions (due to the solar scattering and/or thermal 

sources) of the radiative transfer equation (RTE) on a layer-by-layer basis. The second part uses 

the adding method for the stacking of reflection and transmission matrices and source function 

vectors in order to find the radiance fields corresponding to whole-atmosphere reflectances and 

transmittances at top of atmosphere (TOA) and bottom of atmosphere (BOA). In this work we 

present a complete linearization of the Radiant model; we demonstrate that the radiation field 
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is analytically differentiable with respect to any atmospheric or surface property for which a 

Jacobian is required. For the discrete ordinate part of Radiant, the linearization work is based 

closely on that used in the LIDORT model [4, 8]. The linearization of the adding principle is 

completely new. 

1.2. The Radiant model in the OCO mission 

Radiant is the radiative transfer model selected for the Orbiting Carbon Observatory (OCO) 

Level 2 algorithm to retrieve column-weighted CO2 from a remote sensing platform [19, 20]. 

The aim of the mission is to retrieve total CO2 to an accuracy 1 part per million on regional 

scales in order to provide accurate input for the determination of carbon fluxes on a global 

basis (see for example [21]). The OCO mission is scheduled for a 2008 launch and will be 

synchronized ahead of the EOS A-train in a 705 km polar orbit. The OCO instrument comprises 

3 high-resolution spectrometers measuring earthshine backscatter in the O2 A band, the weak 

CO2 band at 1.61 µm and the strong CO2 band at 2.06 µm. There are three science modes of 

operation: the nadir viewing mode (over most surfaces), the glint mode for glancing incidence 

over sunlit oceans, and the target mode (stare capability). In nominal nadir-viewing mode, the 

spatial footprint is approximately 1.25 x 2.3 km. The inverse problem will be based on classical 

optimal estimation methods [22], while the forward model part of the retrieval requires a full 

scattering radiative transfer treatment. For more details on the OCO mission, see [20]. 

The OCO forward model requirements have influenced the Radiant model development. 

Since OCO will measure at high solar zenith angles, it is necessary for Radiant to treat solar 
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beam attenuation in a curved spherical-shell atmosphere (scattering is still treated as plane-

parallel). This is the commonly-used pseudo-spherical (PS) approximation [23]. Here we 

follow the average secant PS formulation as in the LIDORT models [4]. For the glint and target 

modes, satellite viewing angles may reach up to 75◦ from nadir, and it then becomes necessary 

to treat source function integration along the line-of-sight for a curved atmosphere [14, 24, 25]. 

As with DISORT and LIDORT, Radiant uses the Nakajima-Tanaka TMS single-scatter correc

tion [26] to derive more accurate radiance fields. Given the wide variety of land surfaces sam

pled, the Radiant model has also been given a full BRDF surface reflectance capability based on 

the formulations in DISORT [27] and (for the derivation of analytic weighting functions with 

respect to surface properties) LIDORT [8]. 

There is also a spectral binning procedure in the OCO L2 algorithm which pre-calculates and 

stores classified sets of reflection and transmission matrices. The integration of spectral binning 

in Radiant is a considerable task that is outside the scope of the present work; more details will 

be presented in a forthcoming paper [28]. 

1.3. Scope of the paper 

The first two sections are devoted to the discrete ordinate part of Radiant. Section 2 sets 

up the radiative transfer equation (RTE), defines inputs of basic optical properties and their 

derivatives, and gives a summary of the pseudo-spherical approximation. Section 3 discusses 

homogeneous and particular solutions for the RTE in each layer and summarizes the gener

ation of analytic derivatives for these solutions. These two sections are based closely on the 



6 R. Spurr, M. Christi / Journal of Quantitative Spectroscopy & Radiative Transfer ?? (????) ??–?? 

LIDORT formalism; we summarize results without giving detailed proofs. In section 4, we 

establish the link between the discrete ordinate solutions and the adding formalism by deriva

tion of the reflection and transmission function matrices and solar source function vectors for 

each atmospheric layer from the discrete ordinate solutions of section 3. In addition we derive 

analytic derivatives of these quantities with respect to atmospheric variables. This material is 

unfamiliar (especially the linearization aspects) and we have gone into more detail here. 

In section 5, we describe the interaction principle or adding mechanism to build whole-

atmosphere reflection and transmission matrices and source vectors through the repeated ad

dition of layer quantities. We apply the boundary conditions and solve for the radiance field at 

the top and bottom of the atmosphere (TOA and BOA). Although this material is familiar, we 

have given a detailed exposition as a prelude to the new part of the paper in section 6. Here we 

present a complete analytic differentiation of the whole adding operation, and we demonstrate 

how analytic weighting functions may be derived from this operation. Section 7 contains a 

digest of additional implementations in Radiant (in particular the BRDF specifications and the 

single scatter corrections), and some notes on the verification of the model. In the conclusion, 

we remark on future developments for the forthcoming OCO application. 
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2. Basic Equations and Definitions 

2.1. Radiative transfer equations 

All scattering processes are treated for a plane-parallel medium, but we allow for curved path 

attenuation of the solar beam before scattering (this is the pseudo-spherical approximation). 

Single scattering albedos and phase functions are independent of height in a given atmospheric 

layer. The atmosphere is regarded as a collection (or stack) of optically uniform layers; we use 

optical thickness x (measured from the top of a layer) as the vertical coordinate. 

We first consider the RTE for a single layer. The intensity is expanded as a Fourier cosine 

series in the relative azimuth φ − φ0. Using the expansion of the phase function in terms of 

Legendre polynomials in the cosine of the scatter angle, plus the addition theorem for Legendre 

polynomials, the azimuthal dependence of the phase function can also be expressed as a cosine 

series in relative azimuth. The azimuth separation follows immediately, and we obtain the 

following equation for each Fourier component Im(x, µ) of the intensity: 

µ
dIm(x, µ)

= Im(x, µ) − 
� 1 F� 

�m0Πm(µ, −µ0) ˆ , (1)Πm(µ, µ�)Im(x, µ�)dµ� − Te−xλ 

dx 2π−1 

where µ is the polar angle cosine. The last term in Eq. (1) is the solar source: F is the solar 

extraterrestrial flux, and λ and T̂ are the average secant and initial transmittance (to the layer 

top) of the solar beam in the pseudo-spherical approximation (we define these quantities below 

in section 2.3). The phase function quantities Πm are defined in terms of normalized associ

ated Legendre polynomials Pl
m(µ) and coefficients βl (the phase function Legendre expansion 
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coefficients multiplied by 2l + 1)) through: 

1 
2�N−1 

Πm(µ, µ�) = 
2
ω βlPl

m(µ)Pl
m(µ�). (2) 

l=m 

The integral in Eq. (1) is the multiple scatter contribution. To obtain discrete ordinate so

lutions, we replace this term with a summation using a “double Gauss” quadrature scheme 

defined for the two polar angle half-spaces. Each quadrature has N points, with abscissae 

and weights {µi, ai}, i = 1, . . . , N in the positive half-space and {−µi, ai}, i = 1, . . . , N for the 

negative half-space. The RTE is then replaced by the discrete ordinate form: 

µi 
dIm(x, µi) = Im(x, µi) − 

j=±N

aj Πm(µi, µj )Im(x, µj ) − 
F� 

�m0Πm(µi, −µ0) ˆ .T e−λx (3)
dx 2π 

j=±1 

2.2. Optical property inputs 

For a given layer n, the input optical properties are the total layer single scattering albedo 

ωn, the layer optical thickness (for extinction) Δn and the total layer phase function Legendre 

expansion coefficients βln. From Eq. (3), it is the combination φln ≡ ωnβln that occurs in the RTE. 

Apart from specification of the surface reflectance, the set of inputs {ωn, Δn, βln} is sufficient to 

solve for the radiance field in a multilayer multiply-scattering atmosphere. 

For the additional output of an analytic weighting function with respect to an atmospheric 

variable ξn in layer n, we require analytic derivatives of the basic optical property inputs with 

respect to ξn. Defining the linearization operator Ln ≡ ∂ , then the additional inputs to the ∂ξn 

linearized model are Ln[ωn], γn ≡ Ln[Δn] and Ln[βln]. In the sequel, we will use the combi
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nation ψln ≡ L[φln] = L[ωnβln]. These derivative inputs are the end points in the chain rule 

differentiation of the radiance field. 

2.3. Pseudo-spherical formulation 

In terms of a vertical optical thickness grid Δn for n = 1, . . . Na (where Na is the total number 

of layers in the model atmosphere), the attenuation of the solar beam at any point within layer 

n is given by T̂ (x) = T̂ne
−λnx where T̂n is the transmittance of the solar beam to the top of the 

layer and λn the average secant for that layer. In a curved atmosphere, we use the geometrical 

Chapman factors {fn,k}: these are the slant path geometrical distances traversed through each of 

the layers k, k = 1, . . . , n divided by the corresponding vertical distances. In a plane parallel 

atmosphere, fn,k = µ
1 
0 

(a constant), where µ0 is the solar zenith angle cosine. From the defini

tion of attenuation, it follows that T̂n = T̂n−1e
−λn−1Δn−1 for attenuation to the top of layer n, 

and hence for n > 1 the initial transmittance and average secant can be expressed as 

n�−1 
T̂n = exp − 

k=1 
fn−1,kΔk ; (4) 

nP nP−1 
fn,kΔk− fn−1,kΔk 

λn = k=1 
Δ

k

n 

=1 , (5) 

with T̂n = 1 and λn = fn,n for n = 1. 

Linearization of the pair T̂n, λn is straightforward, and requires knowledge only of input 

quantities γn = Ln[Δn]. Lk[T̂n] will refer to a linearization of T̂n due to variation of a quantity in 

a layer k < n. Since the solar beam is attenuated through the atmosphere to layer n, variations 

in layers k < n will contribute in the differentiation of T̂n, and layers k ≤ n will contribute in 
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the differentiation of λn. For n > 1 and k < n, we find 

Lk[T̂n] = −γkfn−1,kT̂n, (6) 

and Ln[T̂n] = 0 for n = 1. For the average secant linearization Lk[λn], we have: 

Lk[λn] = (fn,k−fn−1,k)γk (n > 1, k < n); (7)Δn 

(fn,n−λn)γnLn[λn] = Δn 
(n > 1). (8) 

and Ln[λn] = 0 for n = 1. In the plane parallel case, Lk[λn] = 0 for every n, k since λn = 1/µ0. 

Slant path lengths may be easily computed for a shell atmosphere with no refraction; we 

require only knowledge of the level altitudes and the earth radius. In this case, the solar zenith 

cosine is µ0 at all levels. In a refractive atmosphere, we use Snell’s law and refractive bending 

through a finely-layered atmosphere; pressure and temperature profiles are now required as 

input. In the refracting case, the solar zenith angle changes slightly through the atmosphere 

from its TOA value of θ0: the ray tracing yields SZA values all levels, and we define repre

sentative solar zenith cosines µ̃n for each layer n as the average of the layer boundary values 

(see [4] for more details on this point). 
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3. Basic RTE solutions and linearizations 

This section is concerned with discrete ordinate solutions to the RTE in an optically uniform 

layer. The theory may be found in a number of places in the literature [4, 5, 16]. 

3.1. Homogeneous solutions 

To get solutions of the homogeneous version of Eq. (3), we substitute Ij ∼ Xj e
−νx for j = 

±1, . . . , ±N . By using the sum and difference vectors ϑj = Xj + X−j and ςj = Xj − X−j for j = 

1, . . . , N , Eq. (3) is reduced to an N -rank eigenproblem with eigenvalues να 
2 and eigenvectors 

ςα: 

Γ − ν2 E ςα = 0, where Γ = (ζ − η) (ζ + η) ; (9)α

= Π+ /µi and ηij ij wj /µi. (10)ζij ijwj − δij = −Π−

The eigenvalues ±να occur in pairs. In the above equations, α = 1, . . . , N , E is the identity 

matrix and the elements Π± = Π±(µi, ±µj ) are given by Eq. (2) evaluated at quadrature polar ij 

angle cosines. The sum vector ϑα satisfies the auxiliary equation: 

N

ναϑiα = (ζij + ηij ) ςjα. (11) 
j=1 

Equations (9) and (11) are sufficient to determine the solution of the homogeneous equations. 

The eigenproblem in (9) can be solved reliably using standard numerical routines. We de

fine the eigenvectors ςα to have unit length. We also define N -vectors X± such that X± = α jα 

1 (ςjα ± ϑjα), where j = 1, . . . , N . These solution vectors are then combined as the columns 2 



12 R. Spurr, M. Christi / Journal of Quantitative Spectroscopy & Radiative Transfer ?? (????) ??–?? 

of matrices of solutions Y which we will require for linearizing the transmission and reflec± 

tion matrices in section 4. We collect eigenstream layer transmittances exp[−ναΔ] as diagonal 

elements of the matrix Λ = diag[e−ν1Δ , . . . , e−νNΔ]. 

We now turn to the linearization of the above process. The layer index n is implicit in this 

section. From the definition of Π±
ij , we can define the linearizations 

1 
2�N−1 

[Π±] = (±µi)P m(µj ), (12)Ln ij 2 
ψlnPl

m 
l


l=m


and the linearizations L[ζ] and L[η] then follow from Eq. (10); L[Γ] then follows from the 

definition in Eq. (9). Differentiation of the eigenproblem in (9) yields: 

(Γ − ν2 E)L[ςα] = 2ναL[να]ςα − L[Γ]ςα. (13)α

For each α, this linear system has N + 1 unknowns L [να] (a scalar) and L[ςα] (an N -vector).. 

An additional constraint comes from the unit normalization condition imposed on the eigen

vectors: since ςα ςα = 1 (a vector product), then L [ςα] ςα = 0. This constraint combined · · 

with (13) is sufficient to solve the N + 1 linear system (see [6] for more detail). From these 

results, it is easy to write down the linearizations of the solution vectors X±
α and hence the 

matrices Z± = L [Y±] required for linearization of the transmission and reflection matrices in 

section 4. We will also need linearizations of the layer transmittances exp[−ναΔ]: 

L[e−ναΔn ] = −(L[να]Δn + ναγn)e−ναΔn . (14) 

We collect these linearizations in the diagonal matrix H = L[Λ]. 
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3.2. Particular solutions 

To get the particular integral corresponding to solar forcing, we try a solution of the form 

Ij
± ∼ B± T̂n exp(−xλn) in Eq. (3) (now we retain the layer indexing explicitly). This eliminates jn 

the optical depth dependence and we are left with a linear system of order 2N . The reduction 

in order follows from the use of sum and difference vectors K∗ 
n = B+ 

n − B−
n , J∗ 

n = B+ 
n + B−

n , 

A+ A+D∗ = n and S∗ = n + A−
n (µi) = F� (2 − δm0) Πn(±µi, −˜ ) and the Πn n − A− , where A± µnn n 2π 

matrix is defined in the usual way. We eliminate J∗n in favor of K∗
n to get 

Γn − Eλn 
2 Kn 

∗ = − (ζn − ηn) Dn 
∗ − λnSn 

∗ (15) 

for the difference vector Kn
∗ . Γn is the eigenmatrix in (9) and E is again the identity matrix. 

This linear system of order N is solved numerically by LU decomposition. The sum vector J∗ 
n 

is found from the auxiliary equation 

λnJ∗ 
n = (ζn + ηn) K∗ 

n + D∗ 
n. (16) 

This is enough to establish the solutions for B±
n . In section 4, we will use the vector quantities 

F±
n ≡ B±

n T̂n (solar source solution vectors scaled by the initial transmittances) and the scalar 

average secant transmittances Qn ≡ exp[−λnΔn]. 

For the linearization, we allow variations in layers k above or equal to layer n. The orig

inal particular solution was determined from the linear system (15). The application of the 

linearization operator Lk will result in the same linear system, but with a different (perturbed) 

source vector on the right hand side. We note first that Lk[Γn] = 0 for k =� n, since Γn only 

depends on the optical property combination φln = ωnβln in layer n. This is also true for ζ and 
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η and vectors A±
n defined above: for k =� n, we have Lk[ζn], Lk[ηn], and Lk[A±

n ] = 0 and for 

k = n, these can be written down easily in terms of the optical property linearizations ψln. This 

means that the linearizations Lk[S∗ ] and Lk[D∗ ] are defined only for k = n. The linearization n n

of Eq. (15) is then 

Γn − Eλn 
2 Lk [Kn

∗ ] = δnkΩn − Sn
∗ Lk [λn] , (17) 

where we have defined the following auxiliary quantity: 

Ωn = −Ln [ζn − ηn] D∗ 
n − (ζn − ηn) Ln [D∗ 

n] − λnLn [S∗ 
n] − Ln [Γn] K∗ 

n. (18) 

This establishes Lk[K∗ ]; we can then linearize the auxiliary relation Eq. (16) to get Lk[J∗ ].n n

Finally, we combine these two sum and difference linearizations to get the result for Lk[B±].n 

In section 4, we also use vector quantities G±
n ], which are established from product kn ≡ Lk[F±

differentiation of B±
n T̂n. The linearized whole layer transmittance scalar is given by 

Θkn ≡ Lk[Qn] = −(Lk[λn]Δn + δknλnγn)Qn. (19) 

This finishes the set-up and linearization of the basic RTE solution. 
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4. Layer reflection, transmission and source functions 

We start with the general discrete ordinate solution in a given layer: 

�N � � 

iαe−να(Δ−x) e−λxIi
± = LαXiα

±e−ναx + MαX
� + Fi

± , (20) 
α=1 

where i, α = 1, . . . N , and X± and να are the discrete ordinate solutions vectors and separation iα 

constants (eigenvalues), respectively; Fi
± is the particular integral source vector for the solar 

beam. Δ is the whole layer optical thickness. We recall the following notation (boldface entries 

for vectors and matrices): Λ = δiαe−Δνα ; Y = X± ; Q = e−Δλ; F± = Fi
±.± iα

In Eq. (20), L and M are vectors of integration constants. In the DISORT and LIDORT discrete 

ordinate models, these vectors are established for all layers in the atmosphere by application of 

boundary conditions at the top and bottom of the atmosphere and continuity conditions across 

intermediate layer interfaces. This is the boundary value problem for a multi-layer atmosphere; 

for a description, see [4] for example. 

4.1. Elimination of integration constants 

In Radiant, we take a different path towards boundary value determination. From Eq. (20), 

we rewrite the upwelling and downwelling intensities at the layer boundaries as: 
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I↑(0) = Y+L + Y ΛM + F+; (21)−

I↓(0) = Y L + Y+ΛM + F−; (22)−

I↑(Δ) = Y+ΛL + Y M + F+Q; (23)−

I↓(Δ) = Y ΛL + Y+M + F−Q. (24)−

The first two equations in this set are for optical thickness x = 0 at layer top; the second two 

equations apply for x = Δ at the lower boundary. The layer index n is understood. 

The object is to eliminate L and M from two of these four equations in order to find two 

relations between the four intensity vectors, and hence to establish the layer reflection and 

transmission matrices r± and t± and layer source vectors s±. We multiply Eqs. (22) and (23) 

by Y−1 and eliminate L in favor of M. The result is: − 

M = D−1 I↑(Δ) − CI↓(0) + CF− − F+Q , (25) 

where we have defined the auxiliary matrices: 

Y+ΛY−1; (26)C ≡ −


D ≡ Y [E − (Y−1Y+Λ)2]. (27)
− − 

A similar operation can be performed to eliminate M in favor of L: 

L = D−1 I↓(0) − CI↑(Δ) + CF+Q − F− . (28) 
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We now substitute these last results into Eqs. (21) and (24) to get: 

I↓(Δ) = t−I↓(0) + r+I↑(Δ) + s−; (29) 

I↑(0) = t+I↑(Δ) + r−I↓(0) + s+ , (30) 

from which we can now read off the desired results: 

t− = t+ = t = Y−ΛD−1 − Y+D−1C; (31) 

r− = r+ = r = Y+D−1 − Y−ΛD−1C; (32) 

s+ = F+ − tF+Q − rF−. (33) 

s− = F−Q − tF− − rF+Q; (34) 

It can be shown that the expressions for r and t can be re-cast in the forms: 

t = aD−1; (35) 

r = bD−1; (36) 

where 

a ≡ (Y− − Y+Y−1 
− Y+)Λ; (37) 

b ≡ Y−Λc − Y+; (38) 

c ≡ Y−1 
− Y+Λ; . (39) 

and D is given in Eq. (27). This form is used in Radiant to improve numerical efficiency by 

requiring fewer matrix manipulations. 
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4.2. Linearizing the r and t matrices 

For a given layer, r and t matrix derivatives will depend only on quantities varying in that 

layer, so we continue to suppress layer index n in this subsection. The following quantities have 

already been established from the linearization of the homogeneous solutions: Z± = Ln[Y±] 

and H = Ln[Λ]. We proceed to apply chain-rule differentiation to establish the linearizations 

u ≡ L[r] and v ≡ L[t]. We first linearize the auxiliary matrices a, b, c and D defined in the 

previous subsection, along with two additional matrices e and f defined as e = E − c2 (where 

E is the identity matrix) and f = Y−1Y+. Upon differentiating, we obtain − 

L[a] = (Z− − Z+f − Y+L[f ])Λ + (Y− − Y+f)H; (40) 

L[b] = Z−Λc + Y−(Hc + ΛL[c]) − Z+; (41) 

L[c] = Y−1 {Z+Λ + Y+H − Z−c} ; (42)− 

L[D] = Z−e + Y−L[e]; (43) 

L[e] = −L[c]c − cL[c]; (44) 

L[f ] = Y−1 (45)− (−Z−f + Z+). 

Finally, we return to the matrix definitions of t and r in Eqs. (35) and (36). Upon differentiating 

and using the definitions of t, r, D, L[a], L[b], and L[D], the complete linearization of the 

transmission and reflection matrices can be expressed as 

v = {L[a] − tL[D]} D−1; (46) 

u = {L[b] − rL[D]} D−1 . (47) 
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It is worth noting again that these two linearizations are only defined for the layer in which a 

quantity is varying, that is, Lk[rn] = Lk[tn] = 0 for k =� n. 

4.3. Linearizing the s±n vectors 

For the source terms due to solar forcing, we reintroduce the layer index n for which lin

earizations are required, and use layer index k for those layers which are responsible for the 

linearizations. From Section 3.3, we know that the scalar Qn has linearizations from layers 

k ≤ n, and the same applies to the source function vectors F±. We have already defined n 

the linearizations G± = ] (vectors) and Θkn = ] (scalars). Continuing, we also kn Lk[F±
n Lk[Qn

know un and vn from the preceding analysis. We can now apply straightforward chain rule 

differentiation to the definitions for s±n in Eqs. (33) and (34). The results for w±
n ] are: kn ≡ Lk[s±

w+ = G+ G+ Qn + F+ F+ G− F−, (48)kn kn − tn kn n Θkn − δknvn n Qn − rn kn − δknun n 

w− = G− Θkn − rn G+ Qn + F+Θkn − δknunF+ G− F−.kn knQn − F−
n kn n n Qn − tn kn − δknvn n(49) 

This completes the linearization of transmission and reflection matrices and source vectors.
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5. The Interaction Principle 

Now we turn to the stacking of layers (known variously as the adding method, the interac

tion principle or matrix operator theory). Although the adding method is hardly new, we will 

take some care over the mathematical exposition, as this will be important for the linearization 

n

that follows in section 6. Symbols rn and tn indicate layer reflection and transmittance matrices, 

n

and s± and T±

mittance matrices appropriate to a stack of n layers, and S±

n Rlayer source function vectors. We use symbols ±
n for the reflection and trans-


for the corresponding stack source


n

nnfunction vectors. Given such a stack of size n − 1 for which R±
−1, T±

−1


been established, we then wish to add the next layer n to the stack. New stack variables R±


nand S±−1 

n

have already 

and s±

,


T± and S±


The interaction principle accomplishes this task.


5.1. Adding Layers 

nn are based on the existing stack and on the addition of layer quantities rn, tn .


I IWe write and↑ ↓
n

nn

n

n

of layer n (I0 is the TOA field). For the existing stack of n − 1 layers: 

+ R+I↓ = T−
−1I0

↓
n−1 + S−

= T+ 
−1

for the upwelling and downwelling radiance fields at the lower boundary


I↑ ; (50)
−1 −1 −1nn

I↑0 nnI
↑ + R−

−1I
↓
0 + S+ 

−1,−1 n (51)




� �


21 R. Spurr, M. Christi / Journal of Quantitative Spectroscopy & Radiative Transfer ?? (????) ??–?? 

while for the new layer n, we have: 

+ s−nI↓n 

1−

I↓n

It ↑= nn

I↑n

1−

(52)
+ rn ;
= tn −1 

I↑ I↓ + s+ 

For a stack of n layers obtained by combining these sets of equations, we define new stack 

variables through: 

T− + R+I↑ + S−

n

n

T I R S+ +−+ +↑
n

n

n
n

n
n

n

n

n (53)
+ rn ,


I↓n 

I↑0 

I↓0 ; (54)
=


I↓0 (55)
=
 .


ITo establish the new stack variables, Eq. (53) is first inserted into Eq. (50), to eliminate ↑
n

nand thus obtain the following equation for I↓−1: 

−1 

+ R+ 
−1 + R+ 

−1s
+ 
n n+ S−−1T−

−1nI↓ = P−

We have defined the auxiliary matrix: 

nn I↓0 I↑n n .
 (56)
t
−1 n n

)−1 
n= (E − R+ 
−1rnP−

where E is again the identity matrix. For the downward adding, the auxiliary equation Eq. (56) 

n (57)
,


I Iis inserted into Eq. (52) to express and↓ ↑
nn

in Eqs. (54) and (55), we find: 

R− P+ 

n

n

n

n

nn

n

n

n 

auxiliary equation Eq. (56) is inserted into Eq. (53). Comparing the results with the definitions 

T− P−

S− s− P−(R+ 
−1s

+ 

in terms of I↓0 . Similarly for the upward adding,


nT−
−1; (58)
= tn

+ T+ 
n−1nR−

−1 nT−
−1; (59)
=
 rn

=
 + tn n+ S−−1).
 (60)
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for the downwelling interaction and 

T+ P+ 

R+ P−

n

n

n

n 

= T+ 
n−1 tn; (61) 

R+ 
−1 (62)
+ tn tn;= rn n

S+ P+ + s+= 

for the upwelling interaction. Here, we have defined another auxiliary matrix: 

nnn S+ 
−1 + T+ 

−1 (rnS−−1n ),
 (63)
n n

)−1P+ 

The interaction principle is expressed through these two sets Eqs. (58)-(60) and (61)-(63). There 

is no stack above the first layer; therefore, for n = 1 we have: 

T1
± = t1; R1

± = r1; S1
± = s1

±. (65) 

N

N

The adding process is depicted in Figure (1). 

5.2. TOA and BOA output 

+− −T R I S+ +↑= N N

NN

INSERT FIGURE 1 here. 

N

N

n

If the atmosphere has a total of Na layers, the adding operation is repeated until reflection 

and transmission matrices and source vectors are obtained for the whole atmosphere, and the 

TOA upwelling field and the BOA downwelling field are given through: 

= T+ I↑ + R− + S+ 

= (E − rnR+ 
−1 . (64)
n

I↓0 ; (66)

a a a a a 

I↓N

I↑0 I↓0 .
 (67)

a a a a 
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Suitable boundary conditions are then applied to set the TOA and BOA fields. At the surface, 

we have a reflectance condition: 

I↑ = RGI↓ + I↑ (68)Na Na D, 

where RG is a surface reflectance matrix and I↑ is the reflected direct-beam field at BOA. For a D 

Lambertian surface, the matrix RG has elements (RG)ij = 2ρδ0mµj aj for Lambertian albedo ρ 

and discrete ordinate streams and weights µj and aj respectively. Assuming a TOA boundary 

condition I↓0 = 0 (no downwelling diffuse radiance at the top of the atmosphere), Eq. (68) is 

then substituted in Eq. (66), to obtain the following for the BOA downwelling field: 

I↓ = (E − R+ RG)−1 S− + R+ I↑ . (69)Na Na Na Na D 

This is then substituted in Eq. (68) which is in turn substituted into Eq. (67) to obtain the TOA 

upwelling field. 
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6. Linearization of the adding method 

6.1. Linearization setup and rules 

We wish now to linearize the complete set of stack equations from section 5. Layer index k 

indicates the active layer containing one or more atmospheric variables for which we desire to 

define weighting functions, and layer index n is used for the addition of stacking layers in the 

interaction principle. In section 4, we wrote down matrix expressions for layer quantities rk, tk 

and s± in terms of the RTE solutions. We also derived their derivatives uk ≡ Lk[rk], vk ≡ Lk[tk]k 

and w±
n n ≥ k.kn ≡ Lk[s±] ∀ 

We use the following symbols to denote stack linearization: U±
n ]; V±

n ]kn kn ≡ Lk[R± ≡ Lk[T±

and W±
n ]. All stacks above k will be unchanged by any variation in layer k. Thus: kn ≡ Lk[S±

U± = 0, kn = 0 and kn = 0 ∀ n ≤ k. (70)V± W±
kn 

Once we reach the active layer, we will pick up linearization. There are two situations to 

consider. 

1. When the stack addition reaches active layer k, that is k = n, we will pick up variations 

uk, vk and w± from linearizations of the layer reflection and transmission matrices and kk 

source function vectors. The linearized stack is now active, and U±
kn and W± are kn, V±

kn 

now defined for the first time. [The special case k = n = 1 is considered below]. 

2. For layer additions below k, that is n > k, the linearizations picked up in the previous step 
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will propagate downwards to the bottom of the atmosphere, but there will be additional 

variations w± in the solar source terms to be included in the stacking. kn 

To perform the linearized adding, we could proceed by adding layers one-by-one as with the 

normal adding process (Figure 1). However, we may achieve increased numerical efficiency by 

re-using various layer-associated matrices and vectors that were obtained during the computa

tion of the basic state radiances. In addition, one may also re-use blocks consisting of stacks of 

atmospheric layers. This idea is referred to as layer-saving and is depicted in Figure 2, in which 

the third layer is active (that is, weighting function variables belong to this layer). From the 

figure, we observe there are two fundamental operations to perform: (1) adding an individual 

linearized lower layer to an unlinearized upper stack consisting of one or more layers; and (2) 

adding a lower stack consisting of one of more layers to the already linearized upper stack to 

obtain the linearized stack for the entire model atmosphere. Aside from the initial computa

tions of necessary matrix and vector products, these two operations encompass the essence of 

linearized adding using the layer-saving mode. 

To aid the discussion of these operations, we employ double subscripts on T±, R±, and 

S± in order to distinguish between matrices associated with different stacks of layers. For 

example, T+
1,k−1 is the upwelling transmission matrix associated with the stack of layers 1 to 

k − 1, whereas T+ is the same matrix associated with the stack of layers k + 1 to n.k+1,n 

INSERT FIGURE 2 here. 
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6.2. Operation 1: adding a linearized lower layer to an unlinearized upper stack 

In this case, we have n = k; therefore, linearizations uk, vk kk and w± will apply for the 

linearized layer. In what follows next, we use the following auxiliary matrices 

P+ = (E − rkR+ )−1 , P− = (E − R+ rk)−1; (71)kk 1,k−1 kk 1,k−1

+ = T+ P+Akk 1,k−1 kk, A− = tkP− ; (72)kk kk

B+ = ukR+ B− = R+ 
kk 1,k−1, kk 1,k−1uk; (73) 

C+ = P+ tk, C− = P− T− ; (74)kk kk kk kk 1,k−1

+ = P− R1
+ 
,k−1tk, kk = P+ rkT− ; (75)Dkk kk D−

kk 1,k−1

E+ = P+ (rkS− + s+), E− = P− (R+ s+ + S− ). (76)kk kk 1,k−1 k kk kk 1,k−1 k 1,k−1

These matrices (with the exception of B± ) represent matrix products that are constructed kk

during the computation of radiances for the base atmospheric state; they are saved and re

used here in the linearized adding process. We may now apply chain-rule linearization to 

Eqs. (58)-(60) to obtain the downward set of linearized transmission and reflection matrices 

and accompanying source vector. Doing this, we get: 

V− = (vk + A− ; (77)kk kkB
− )C−kk kk

U− = + + + ukT− ); (78)kk Akk(BkkDkk 
−

1,k−1

kk vkE− + A− (B− kk + R+ + ) + w−W− = kk kk kkE
−

1,k−1wkk kk, (79) 

for the downward stack linearizations.
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Similarly, applying the chain rule to Eqs. (61)-(63) for the upward set, we get: 

V+ + + + 
kk = Akk(BkkCkk + vk); (80) 

U+ + + + R+ 
kk = vkDkk (B− kk vk) + uk; (81)kk+ A−

kkD 1,k−1

W+ = + + + + ukS− ) + w+ (82)kk Akk(BkkEkk 1,k−1 kk, 

for the upward stack linearizations. The case k = n = 1 is special. There is no stack, and we 

just initialize the linearizations with: 

V± = v1, 11 and W± = w± (83)11 U± = u1, 11 11. 

6.3. Operation 2: adding a lower stack to a linearized upper stack 

In this case, we have already picked up the stack linearization as far as layer k, as expressed 

through Eqs. (77)-(79) and (80)-(82). For the remaining lower stack consisting of layers n > k to 

Na, there is no variation of the layer reflectance and transmittance matrices rn and tn; however, 

there are solar source function variations w± = nLk[s±] which must be taken into account. kn 

As noted above, these arise because variations in layer k will propagate downwards to layers 

n > k because of solar beam attenuation. As in the previous case, we define a set of auxiliary 
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matrices: 

P+ R+ )−1 )−1;kn = (E − Rk
−
+1,n 1,k , P− = (E − R1

+ 
,kR

− (84)kn k+1,n

+ = T+ P+ 
kn = T−

kn; (85)Akn 1,k kn A−
k+1,n P

−

+ = U+ Rk
−
+1,n, kn = R− U+ ; (86)Bkn kn B− k+1,n kn

+ = P+ T+ 
k+1,n, kn = P− T− ; (87)Ckn kn C− kn 1,k

D+ R+ T+ , D− = P+ R− ;kn = Pkn
−

1,k k+1,n kn kn k+1,n T1
−
,k (88) 

+ = P+ (R− S− + S+ ), kn = P− (R+ S+ + S1
−
,k). (89)Ekn kn k+1,n 1,k k+1,n E− kn 1,k k+1,n 

where the subscript n in P± and E± denotes that these quantities are kn, A±
kn, Bkn

± , C± kn kn, D±
kn 

associated with the stack of layers from k + 1 to n = Na. Once again, we apply chain-rule 

differentiation to the stacking equations and find 

+Vkn 
− = A− (BknC

− + V− ); (90)kn kn kk

= V+ 
kn 

+ (B− + Rk
−
+1,n ); (91)U−

kn kkD
− + Akn kn V−

knD
−

kk

W− = + + U+ S+ + R+ + + W− ) + W− (92)kn A− (BknE
−

kk k+1,n 1,kWkn kk kn,kn kn 

for the downward stack linearizations and 

V+ = (V+ + A+ 
kn

+ ; (93)kn kk knB
− )Ckn

U+ = kn
+ + + U+ T+ ); (94)kn A− (BknDkn kk k+1,n

W+ = V+ + + (B− + + R− W− + ) + W+ (95)kn kkEkn + Akn knEkn k+1,n kk + Wkn kk, 

for the upward stack linearizations.
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In these results, everything has been defined with the exception of source vectors W− andkn 

W+ required in Eqs. (92) and (95). These are constructed from the bottom of the atmosphere kn 

upwards using the auxiliary matrices 

P+ = (E − R− ri)−1; (96)in i+1,n 

P− = )−1; (97)in (E − riR−
i+1,n

F+ = tiP+ ; (98)in in

= T− P− (99)Fin
−

i+1,n in, 

and the equations 

+ = + (R− w− + ) + w+ ; (100)Wk(i,n) Fin i+1,n ki + Wk(i+1,n) ki

= F−(riW + w−) + W− , (101)Wk
−
(i,n) in k

+
(i+1,n) ki k(i+1,n)

where i varies from n = Na to k + 1. Here, W± = w± when i = n initially and W± = k(i,n) ki k(k+1,n) 

W± when i = k + 1 is obtained. kn 

6.4. TOA and BOA weighting functions 

The stack linearization is completed when n = Na in Eqs. (90)-(92) and (93)-(95). The end 

result is a set of linearized reflection and transmission matrices and source vectors for the whole 

model atmosphere. We can then apply these results to the boundary conditions and get the 

desired linearizations of the TOA upwelling field and BOA downwelling field: in other words, 

the weighting functions. 
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Referring now to the downwelling field in Eq. (69), the linearization of the auxiliary matrix 

B = (E − R+ RG)−1 is given by Na 

Lk[B] = BU+ RGB. (102)k,Na 

It is then straightforward to apply chain-rule linearizations to the expressions for the BOA

downwelling and TOA-upwelling radiances and find: 

K↓ = B(U+ RGI↓ + W− ); (103)k,Na k,Na Na k,Na 

= V+ + T+ + W+K↑
k,0 k,Na 

RGI↓ Na 
RGK↓

k,Na 
. (104)Na k,Na 

where the direct field linearization has been omitted from these results. 

6.5. Albedo weighting functions 

We add here a note on the determination of weighting functions with respect to a surface 

variable. In this case, the only variation is with the albedo matrix RG, that is we assume a lin

earization Lh[RG] with respect to some surface property h (e.g. Lambertian albedo). Referring 

again to Eq. (69), the linearization of B = (E − R+ RG)−1 is now: Na 

Lh[B] = BR+ (105)Na 
Lh[RG]B. 
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There is no linearization of the atmospheric stack in this case. Applying chain-rule differentia

tion to the BOA-downwelling and TOA-upwelling radiances, we find: 

KNa 

↓ = Lh[B](S−Na 
+ R
+ 

Na 
ID
↑

Na 
Lh[ID

↑+) + BR ];
 (106)


KNa 

↑ = Lh[RG]INa 

↓ + RGKNa 

↓ + Lh[ID
↑ ];
 (107)


K
↑0 T
+ 
Na 

KNa 

↑ .
 (108)
=


This completes the derivation. Radiant has a full BRDF formulation of the surface and, in 

section 7, we summarize this implementation. 



32 R. Spurr, M. Christi / Journal of Quantitative Spectroscopy & Radiative Transfer ?? (????) ??–?? 

7. Other Radiant Issues 

7.1. Additional Radiant implementations 

The option of using delta-M scaling [29] is a standard feature of this and other models. This 

approximation is useful for sharply peaked phase functions and essentially replaces part of the 

phase function with a delta-function, the remaining part then showing a smoother scatter-angle 

dependence which can be readily treated with discrete ordinate methods. The delta-M scaling 

factor f for this partition arises from the constraint of phase function normalization. All optical 

properties are scaled by this application. For details of the standard scaling, see [5]; delta-M 

scaling of the linearized optical property inputs is treated in [7]. 

For dealing with non-Lambertian surfaces with a known BRDF specification, the formalism 

developed in [8] has been implemented in Radiant. BRDFs are represented as a linear sum of 

up to three BRDF kernels, where each kernel shape is taken from a semi-empirical formulation. 

In this sum, each kernel is multiplied by a linear coefficient, and each kernel may be depen

dent on a number of non-linear parameters which characterize the kernel shape function. The 

Lambertian kernel is isotropic. For sunglint off an ocean surface, the key BRDF kernel is the 

Cox-Munk Gaussian distribution of wave-facets characterized by the wind-speed. This BRDF 

formalism is completely differentiable with respect to both the linear kernel coefficients and 

the nonlinear kernel characterization factors such as the wind-speed in the Cox-Munk kernel. 

Some 8 kernels are listed in [8] and these have all been used in Radiant. 

A separate module has been written for the exact single scatter solution to the RTE in the 
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regular pseudo-spherical Radiant model; this module is fully linearized. This single scatter 

module is exact in the sense that all phase function information is used in the single scatter 

computations - the module is designed to replace the truncated form of the single scatter nor

mally produced by Radiant. When delta-M scaling applies, only the optical thickness values are 

used in their delta-M scaled form. This single scatter improvement is known as the Nakajima-

Tanaka (N-T) “TMS” correction [26] and it has been implemented in LIDORT (Versions 2.1 and 

higher) and DISORT (Version 2.0). 

For wide-angle off-nadir views (sunglint mode in OCO), attenuation and single scattering 

along line-of-sight paths should also be treated for a curved atmosphere. This means that the 

N-T single scatter computation must allow for varying geometry along the viewing path. A 

treatment for this has been developed in the LIDORT model [25]. This will also be implemented 

in Radiant and is fully linearized. 

7.2. Verification 

We have verified Radiant by extensive comparisons against DISORT (plane-parallel) and 

LIDORT (pseudo-spherical case). All three models contain similar derivations of the discrete 

ordinate RTE solutions. The major difference is in the use of the adding method in Radiant 

to derive the radiance field; this replaces the linear algebra approach of the other models for 

the determination of integration constants. However, these approaches are alternative solu

tions to the boundary value problem, so one would expect comparisons to show high levels 

of agreement. This is indeed the case; radiance agreements between LIDORT and Radiant 
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are better than 1 part in 106 (7SF) for all cases considered. Weighting functions were checked 

initially through the use of finite difference estimates. Further direct comparisons were made 

with LIDORT output, and again precision was very high - better than 1 part in 104 for all cases 

considered. All BRDF options implemented in Radiant have also been successfully tested both 

for the radiance and Jacobian fields. 
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8. Concluding Remarks 

In this paper, we have derived a new linearization (analytic differentiation) of the interaction 

principle in multilayer radiative transfer theory. This linearization is part of the Radiant radia

tive transfer code, a composite discrete-ordinate adding model which has a major role in the 

forward part of the OCO Level 2 retrieval algorithm for the remote sensing of carbon dioxide. 

It is shown that the complete Radiant scattering code can be linearized, thereby providing 

analytic Jacobians (weighting functions) for any surface and/or atmospheric parameter that is 

part of the inverse problem. Radiant has additional capabilities to deal with large solar zenith 

angles (the pseudo-spherical approximation) and bidirectional reflectances at the surface. 

With the addition of a treatment for the line-of-sight in a curved atmosphere, the Radiant 

development will be completed for OCO; the integration of Radiant with the binning treatment 

will be described in an accompanying paper [28]. OCO is actually a polarizing instrument, 

measuring the radiation field perpendicular to the scattering plane (that is, OCO measures I = ⊥ 

I − Q, for Stokes vector I = [I,Q,U, V ]. It will therefore be necessary to apply a correction to 

the scalar field generated by Radiant. This will be done by means of a look-up table which will 

generate two quantities: the correction Ivector/Iscalar and the Q Stokes parameter. Aerosols (the 

main source of scattered light in the near infrared) are depolarizing in general so it is expected 

these corrections will be straightforward to classify (see for example [30]). In dealing with 

polarization, it is necessary to have a full vector RT model to deal with all orders of scattering, 

and for this, the OCO algorithm is currently using the pseudo-spherical VLIDORT polarization 
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model (R. Spurr, private communication). In this regard, development of a vector version of 

Radiant has now begun. 
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Figure Captions 

1. Figure 1. Illustration of Radiant’s normal mode of operation. 

2. Figure 2. Illustration of Radiant’s layer-saving mode of operation. 
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Figure 1 

Figure 1: Illustration of Radiant’s normal mode of operation. 
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Figure 2 

Figure 2: Illustration of Radiant’s layer-saving mode of operation. 


